IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp509-524.html
   My bibliography  Save this article

The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China

Author

Listed:
  • Li, Wei
  • Lu, Can
  • Ding, Yi
  • Zhang, Yan-Wu

Abstract

In place to reduce greenhouse gas emission efficiently and accomplish carbon emission peak destination ahead of 2030, a variety of policy-based interventions grounded in optimizing energy structure and boosting emission mitigation have been put forward to target carbon-and resource-intensive enterprises across China. Both defusing overcapacity in heavy chemical industry and constructing national carbon trading market are recently attached with a stronger significant importance. A STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) embed dynamic CGE (computable general equilibrium) model is applied in this study to evaluate the simulation effects focusing on China’s economy, energy, and household lifestyle. We devise nine scenarios in terms of the two aforementioned mitigation strategies. The results indicate that, the optimal policy mix, balancing economic improvement, energy mix readjustment, and emission reduction to the maximize value, is founded to be declining the proportion of heavy chemical industry capacity with an annual average level of 3%, 1%, 1%, stipulating carbon price in 5.8 dollar/ton, 11.6 dollar/ton, 14.5 dollar/ton, and distributing annual carbon allowance as 3.5 billion ton, 7 billion ton, 9 billion ton during 2017–2020, 2021–2025, and 2026–2030 respectively.

Suggested Citation

  • Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:509-524
    DOI: 10.1016/j.apenergy.2017.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308875
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huiming & Zheng, Yu & Ozturk, U. Aytun & Li, Shanjun, 2016. "The impact of subsidies on overcapacity: A comparison of wind and solar energy companies in China," Energy, Elsevier, vol. 94(C), pages 821-827.
    2. Major P., 2015. "Internet governance: Trends and realities. Part 1," Бизнес-информатика, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», issue 4 (34), pages 7-14.
    3. Ponjan, Pathomdanai & Thirawat, Nipawan, 2016. "Impacts of Thailand’s tourism tax cut: A CGE analysis," Annals of Tourism Research, Elsevier, vol. 61(C), pages 45-62.
    4. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    5. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    6. Xiaoyi Mu and Haichun Ye, 2015. "Small Trends and Big Cycles in Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Chen, Zhenhua & Xue, Junbo & Rose, Adam Z. & Haynes, Kingsley E., 2016. "The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 232-245.
    8. Yuan, Jiahai & Li, Peng & Wang, Yang & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2016. "Coal power overcapacity and investment bubble in China during 2015–2020," Energy Policy, Elsevier, vol. 97(C), pages 136-144.
    9. Bryant, Gareth, 2016. "Creating a level playing field? The concentration and centralisation of emissions in the European Union Emissions Trading System," Energy Policy, Elsevier, vol. 99(C), pages 308-318.
    10. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    11. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2016. "The impact of verified emissions announcements on the European Union emissions trading scheme: A bilaterally modified dummy variable modelling analysis," Applied Energy, Elsevier, vol. 173(C), pages 567-577.
    12. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    13. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    14. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    15. repec:eee:appene:v:195:y:2017:i:c:p:1100-1111 is not listed on IDEAS
    16. Chang, Kuo-Ping, 1994. "Capital-energy substitution and the multi-level CES production function," Energy Economics, Elsevier, vol. 16(1), pages 22-26, January.
    17. Zhang, Xu & Qi, Tian-yu & Ou, Xun-min & Zhang, Xi-liang, 2017. "The role of multi-region integrated emissions trading scheme: A computable general equilibrium analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1860-1868.
    18. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    19. Munnings, Clayton & Morgenstern, Richard D. & Wang, Zhongmin & Liu, Xu, 2016. "Assessing the design of three carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 96(C), pages 688-699.
    20. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    21. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    22. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    23. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    24. Ziemele, Jelena & Pakere, Ieva & Blumberga, Dagnija, 2016. "The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States," Applied Energy, Elsevier, vol. 162(C), pages 1579-1585.
    25. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    26. Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
    27. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    28. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    29. Kim, Euijune & Hewings, Geoffrey J.D. & Lee, Changkeun, 2016. "Impact of educational investments on economic losses from population ageing using an interregional CGE-population model," Economic Modelling, Elsevier, vol. 54(C), pages 126-138.
    30. Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
    31. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    32. Henningsen, Arne & Henningsen, Géraldine, 2012. "On estimation of the CES production function—Revisited," Economics Letters, Elsevier, vol. 115(1), pages 67-69.
    33. repec:eee:appene:v:198:y:2017:i:c:p:12-20 is not listed on IDEAS
    34. Taylor, Lance, 2016. "CGE applications in development economics," Journal of Policy Modeling, Elsevier, vol. 38(3), pages 495-514.
    35. Wang, Yong-hua & Luo, Guo-liang & Guo, Yi-wei, 2014. "Why is there overcapacity in China's PV industry in its early growth stage?," Renewable Energy, Elsevier, vol. 72(C), pages 188-194.
    36. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    37. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.
    38. Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
    39. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
    40. Dixon, Peter B. & Rimmer, Maureen T., 2016. "Johansen's legacy to CGE modelling: Originator and guiding light for 50 years," Journal of Policy Modeling, Elsevier, vol. 38(3), pages 421-435.
    41. Chiu, Fan-Ping & Kuo, Hsiao-I. & Chen, Chi-Chung & Hsu, Chia-Sheng, 2015. "The energy price equivalence of carbon taxes and emissions trading—Theory and evidence," Applied Energy, Elsevier, vol. 160(C), pages 164-171.
    42. Kang, Minwook & Ye, Lei Sandy, 2016. "Advantageous redistribution with three smooth CES utility functions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 171-180.
    43. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    44. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    45. John H. J. Einmahl & Laurens Haan & Chen Zhou, 2016. "Statistics of heteroscedastic extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 31-51, January.
    46. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    47. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    48. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
    49. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    50. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:renene:v:121:y:2018:i:c:p:700-711 is not listed on IDEAS
    2. repec:eee:energy:v:165:y:2018:i:pb:p:33-54 is not listed on IDEAS
    3. repec:eee:enepol:v:113:y:2018:i:c:p:478-486 is not listed on IDEAS
    4. repec:eee:enepol:v:128:y:2019:i:c:p:45-56 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:509-524. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.