IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v189y2017icp283-300.html
   My bibliography  Save this article

Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland

Author

Listed:
  • Alam, Md. Saniul
  • Hyde, Bernard
  • Duffy, Paul
  • McNabola, Aonghus

Abstract

This study modelled the Passenger (PC) fleet and other categories of road transport in Ireland from 2015 to 2035 to assess the impact of current and potential greenhouse gas mitigation policies on CO2 emissions. Scenarios included the shift of purchasing towards diesel PCs over gasoline PCs. Scrappage rates were also calculated and applied to the fleet to predict future sales of PCs. Seven future policy scenarios were examined using different penetrations of PC sales for different vehicle technologies under current and alternative bio-fuel obligations. Tank to Wheel (T2W) tailpipe and Well to Wheel (W2W) CO2 emissions, and energy demand were modelled using COPERT 4v11.3 and a recently published W2W CO2 emissions model. A percentage reduction of conventional diesel and petrol vehicles, in different scenarios compared to a baseline scenario in the W2W model was applied to estimate the likely changes in T2W emissions at the tailpipe up to 2035. The results revealed that the biofuel policy scenario was insufficient in achieving a significant reduction of CO2 emissions. However, without a fixed reduction target for CO2 from the road transport sector, the success of policy scenarios in the long run is difficult to compare. The current Electric vehicle (EV) policy in Ireland is required to be implemented to reduce CO2 emissions by a significant level. Results also show that a similar achievement of CO2 emission reduction could be possible by using alternative vehicle technologies with higher abatement cost. However, as EV based policies have not been successful so far, Ireland may need to search for alternative pathways.

Suggested Citation

  • Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
  • Handle: RePEc:eee:appene:v:189:y:2017:i:c:p:283-300
    DOI: 10.1016/j.apenergy.2016.12.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916318256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leinert, Stephan & Daly, Hannah & Hyde, Bernard & Gallachóir, Brian Ó, 2013. "Co-benefits? Not always: Quantifying the negative effect of a CO2-reducing car taxation policy on NOx emissions," Energy Policy, Elsevier, vol. 63(C), pages 1151-1159.
    2. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    3. Smith, William J., 2010. "Plug-in hybrid electric vehicles--A low-carbon solution for Ireland?," Energy Policy, Elsevier, vol. 38(3), pages 1485-1499, March.
    4. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    5. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    6. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    7. Ding, Yanjun & Shen, Wei & Yang, Shuhong & Han, Weijian & Chai, Qinhu, 2013. "Car dieselization: A solution to China's energy security?," Energy Policy, Elsevier, vol. 62(C), pages 540-549.
    8. Smith, William J., 2010. "Can EV (electric vehicles) address Ireland’s CO2 emissions from transport?," Energy, Elsevier, vol. 35(12), pages 4514-4521.
    9. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    10. Daly, Hannah E. & Ó Gallachóir, Brian P., 2011. "Modelling future private car energy demand in Ireland," Energy Policy, Elsevier, vol. 39(12), pages 7815-7824.
    11. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    12. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    13. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    14. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    15. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
    16. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
    17. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    18. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    19. Giblin, S. & McNabola, A., 2009. "Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland," Energy Policy, Elsevier, vol. 37(4), pages 1404-1411, April.
    20. Lumbreras, Julio & Borge, Rafael & Guijarro, Alberto & Lopez, Jose M. & Rodríguez, M. Encarnacion, 2014. "A methodology to compute emission projections from road transport (EmiTRANS)," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 165-176.
    21. Huo, Hong & Wang, Michael & Zhang, Xiliang & He, Kebin & Gong, Huiming & Jiang, Kejun & Jin, Yuefu & Shi, Yaodong & Yu, Xin, 2012. "Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts," Energy Policy, Elsevier, vol. 43(C), pages 37-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanming Sun & Guangzhen Zhang, 2024. "Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals," Energies, MDPI, vol. 17(14), pages 1-20, July.
    2. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Quan Dai & Hongfei Jia & Yao Liu, 2020. "Private vehicle-based crowdshipping for intercity express transportation: Feasibility assessment," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    4. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    5. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    6. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    7. Sanghamitra Mukherjee, 2021. "A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland," Working Papers 202119, School of Economics, University College Dublin.
    8. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    9. Mohammed Obaid & Arpad Torok & Jairo Ortega, 2021. "A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    10. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
    11. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2017. "Heuristic method for automakers' technological strategy making towards fuel economy regulations based on genetic algorithm: A China's case under corporate average fuel consumption regulation," Applied Energy, Elsevier, vol. 204(C), pages 544-559.
    12. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    13. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
    2. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    3. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    4. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    6. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    7. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    8. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    9. Travesset-Baro, Oriol & Gallachóir, Brian P.Ó. & Jover, Eric & Rosas-Casals, Marti, 2016. "Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis," Energy Policy, Elsevier, vol. 96(C), pages 78-92.
    10. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    11. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    12. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    13. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    15. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    16. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    18. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
    19. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    20. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.

    More about this item

    Keywords

    Passenger car; CO2; Tank to wheel; Well to wheel; Scenario;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:189:y:2017:i:c:p:283-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.