IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3364-d1431557.html
   My bibliography  Save this article

Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals

Author

Listed:
  • Yanming Sun

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
    International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)

  • Guangzhen Zhang

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Carbon emissions from the Yangtze River Economic Belt are an important element of China’s carbon emission endeavor, and a study of its emission reduction pathway can provide a reference for the country’s overall management of carbon emission reduction. From the perspective of energy consumption, this paper uses the carbon emission factor method to estimate the carbon emissions of the transportation industry in the Yangtze River Economic Belt during 2006–2020, based on the extended STIRPAT model, considering the influence of seven factors, i.e., population size, urbanization rate, GDP per capita, transportation added value, energy structure, energy intensity, and transportation intensity, on carbon emissions. Based on these factors, a scenario analysis, combined with a forecasting model, is used to predict the peak carbon performance of the transportation industry under different development scenarios. The results show that the overall carbon emissions of transportation in the YEB from 2006 to 2020 show a fluctuating upward trend, and the downstream carbon emissions are significantly higher than those in other regions. The main factors influencing carbon emissions from transportation in different upstream, midstream, and downstream regions vary, with both population and economic factors contributing to carbon emissions, while technical factors affect them differently. There are significant differences in the peak carbon performance of transportation under different development scenarios, and the government should take effective measures to work towards achieving the goals of the low-carbon or enhanced low-carbon scenarios.

Suggested Citation

  • Yanming Sun & Guangzhen Zhang, 2024. "Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals," Energies, MDPI, vol. 17(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3364-:d:1431557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanming Sun & Yile Yang & Shixian Liu & Qingli Li, 2023. "Research on Transportation Carbon Emission Peak Prediction and Judgment System in China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    2. Bai, Caiquan & Du, Kerui & Yu, Ying & Feng, Chen, 2019. "Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis," Energy Economics, Elsevier, vol. 81(C), pages 698-708.
    3. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    4. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
    5. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    6. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chuan & Yin, Yutong & Wang, Kun & Ma, Xuying, 2025. "Push or pull? Identifying the OEMs' carbon reduction strategies based on the dynamic evolutionary game approach," Energy Economics, Elsevier, vol. 141(C).
    2. Yanming Sun & Baozhong Chen & Qingli Li, 2024. "Impact of Urban Form in the Yangtze River Delta of China on the Spatiotemporal Evolution of Carbon Emissions from Transportation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shubin & Li, Jiabao & Lu, Quanying, 2024. "Optimization of carbon peaking achieving paths in China's transportation sector under digital feature clustering," Energy, Elsevier, vol. 313(C).
    2. Longe Adedayo Emmanuel & Omitogun Olawunmi & Adelokun Oluwole Oluniyi & Adebayo Emmanuel Olajide & Muhammad Shehu, 2020. "The Impact of Trade and Transport Services on the Environment in Africa," Economic Themes, Sciendo, vol. 58(3), pages 415-439, September.
    3. Armand Totouom & Joseph Pasky Ngameni & Rosine Fassi Poumeni, 2024. "Residential exposure to environmental nuisances in Cameroon," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6120-6131, December.
    4. Xie, Rui & Wei, Dihan & Han, Feng & Lu, Yue & Fang, Jiayu & Liu, Yu & Wang, Junfeng, 2019. "The effect of traffic density on smog pollution: Evidence from Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 421-427.
    5. Zhou, Tao & Huang, Xuhui & Zhang, Ning, 2023. "The effect of innovation pilot on carbon total factor productivity: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 125(C).
    6. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    7. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    8. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    9. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    10. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    11. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    12. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    13. Chukwuemeka Chinonso Emenekwe & Robert Ugochukwu Onyeneke & Chinedum Uzoma Nwajiuba & Ifeoma Quinette Anugwa & Obioma Uchenna Emenekwe, 2025. "Determinants of consumption-based and production-based carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10303-10339, May.
    14. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    15. Huang, Junbing & Wang, Yajun & Lei, Hongyan & Chen, Xiang, 2024. "A technology-driven way to carbon peak and its impact mechanism," Energy, Elsevier, vol. 297(C).
    16. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    17. Li, Jiachen & Jiang, Meiru & Li, Ge, 2024. "Does the new energy vehicles subsidy policy decrease the carbon emissions of the urban transport industry? Evidence from Chinese cities in Yangtze River Delta," Energy, Elsevier, vol. 298(C).
    18. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    19. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    20. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3364-:d:1431557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.