IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v13y2023i4p21582440231219350.html
   My bibliography  Save this article

The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach

Author

Listed:
  • Zhenxiang Cao
  • Liqing Peng

Abstract

In the new era of high-quality economic development, the digital economy offers fresh perspectives and momentum for China to achieve a harmonious balance between innovation-driven growth and environmental protection. We develop a systematic dynamic model to examine the effects of the digital economy on China’s environmental quality. The findings indicate the following: (1) the digital economy initially suppresses but later promotes environmental quality; (2) by empowering primary, secondary, and tertiary industries, the digital economy advances industrial structure optimization and upgrading, leading to improved environmental quality; (3) the digital economy encourages the growth of R&D personnel and the accumulation of R&D capital stock, which fosters technological innovation and enhances environmental quality; (4) the synergistic development of the digital economy, industrial structure upgrading, and technological innovation offset the increase in energy consumption and pollution emissions caused by the digital economy’s scale effect, representing the most favorable scenario for enhancing environmental quality.

Suggested Citation

  • Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
  • Handle: RePEc:sae:sagope:v:13:y:2023:i:4:p:21582440231219350
    DOI: 10.1177/21582440231219350
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440231219350
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440231219350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Senhua Huang & Feng Han & Lingming Chen, 2023. "Can the Digital Economy Promote the Upgrading of Urban Environmental Quality?," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    2. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    3. Chen, Yongmin, 2020. "Improving market performance in the digital economy," China Economic Review, Elsevier, vol. 62(C).
    4. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    5. Sa Xu & Cunyi Yang & Zhehao Huang & Pierre Failler, 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    6. Jahanger, Atif & Zubair Chishti, Muhammad & Chukwuma Onwe, Joshua & Awan, Ashar, 2022. "How far renewable energy and globalization are useful to mitigate the environment in Mexico? Application of QARDL and spectral causality analysis," Renewable Energy, Elsevier, vol. 201(P1), pages 514-525.
    7. Xiaoyan Li & Jia Liu & Peijie Ni, 2021. "The Impact of the Digital Economy on CO 2 Emissions: A Theoretical and Empirical Analysis," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    8. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    9. Jahanger, Atif & Yu, Yang & Hossain, Mohammad Razib & Murshed, Muntasir & Balsalobre-Lorente, Daniel & Khan, Uzma, 2022. "Going away or going green in NAFTA nations? Linking natural resources, energy utilization, and environmental sustainability through the lens of the EKC hypothesis," Resources Policy, Elsevier, vol. 79(C).
    10. Yao Zhao & Xuena Kong & Mahmood Ahmad & Zahoor Ahmed, 2023. "Digital Economy, Industrial Structure, and Environmental Quality: Assessing the Roles of Educational Investment, Green Innovation, and Economic Globalization," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    11. Fakher, Hossein Ali & Ahmed, Zahoor & Acheampong, Alex O. & Nathaniel, Solomon Prince, 2023. "Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators," Energy, Elsevier, vol. 263(PA).
    12. Recep Ulucak & Danish & Salah Ud‐Din Khan, 2020. "Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 857-867, July.
    13. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    14. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    15. Jie Zhou & Hanlin Lan & Cheng Zhao & Jianping Zhou, 2021. "Haze Pollution Levels, Spatial Spillover Influence, and Impacts of the Digital Economy: Empirical Evidence from China," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    16. Muhammad Sohail Amjad Makhdum & Muhammad Usman & Rakhshanda Kousar & Javier Cifuentes-Faura & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "How Do Institutional Quality, Natural Resources, Renewable Energy, and Financial Development Reduce Ecological Footprint without Hindering Economic Growth Trajectory? Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    17. Wu, Wei & Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2021. "Regional low carbon development pathways for the Yangtze River Delta region in China," Energy Policy, Elsevier, vol. 151(C).
    18. Judit Oláh & Nicodemus Kitukutha & Hossam Haddad & Miklós Pakurár & Domicián Máté & József Popp, 2018. "Achieving Sustainable E-Commerce in Environmental, Social and Economic Dimensions by Taking Possible Trade-Offs," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    19. Wen, Huwei & Lee, Chien-Chiang & Zhou, Fengxiu, 2021. "Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises," Energy Economics, Elsevier, vol. 94(C).
    20. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises," Energy Economics, Elsevier, vol. 118(C).
    21. Atif Jahanger & Muhammad Usman & Daniel Balsalobre‐Lorente, 2022. "Linking institutional quality to environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1749-1765, December.
    22. Usman, Muhammad & Balsalobre-Lorente, Daniel, 2022. "Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load?," Energy Policy, Elsevier, vol. 162(C).
    23. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    24. Cui, Lianbiao & Duan, Hongbo & Mo, Jianlei & Song, Malin, 2021. "Ecological compensation in air pollution governance: China's efforts, challenges, and potential solutions," International Review of Financial Analysis, Elsevier, vol. 74(C).
    25. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Khan, Naveed R. & Mirza, Faisal Mehmood & Hou, Fujun & Kirmani, Syed Ali Ashiq, 2019. "The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    26. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    2. Chien‐Chiang Lee & Ying Yuan & Huwei Wen, 2022. "Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 289-310, August.
    3. Pei Xu & Penghao Ye & Atif Jahanger & Siwei Huang & Fan Zhao, 2023. "Can green credit policy reduce corporate carbon emission intensity: Evidence from China's listed firms," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2623-2638, September.
    4. Wen, Huwei & Zhong, Qiming & Lee, Chien-Chiang, 2022. "Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    5. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    6. Zhongxin Ma & Fenglan Wu, 2022. "Smart City, Digitalization and CO 2 Emissions: Evidence from 353 Cities in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    7. Senhua Huang & Feng Han & Lingming Chen, 2023. "Can the Digital Economy Promote the Upgrading of Urban Environmental Quality?," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    8. Lifang Zhang & Yuexu Zhao, 2023. "Research on the Coupling Coordination of Green Finance, Digital Economy, and Ecological Environment in China," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    9. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    11. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    12. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    13. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    14. Atif Jahanger & Muhammad Usman & Daniel Balsalobre‐Lorente, 2022. "Linking institutional quality to environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1749-1765, December.
    15. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).
    16. Shahzad, Umer & Ferraz, Diogo & Nguyen, Huu-Huan & Cui, Lianbiao, 2022. "Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    18. Songqin Zhao & Diyun Peng & Huwei Wen & Huilin Song, 2022. "Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities?," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    19. Jahanger, Atif & Usman, Muhammad & Murshed, Muntasir & Mahmood, Haider & Balsalobre-Lorente, Daniel, 2022. "The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations," Resources Policy, Elsevier, vol. 76(C).
    20. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:13:y:2023:i:4:p:21582440231219350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.