IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp301-313.html
   My bibliography  Save this article

Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India

Author

Listed:
  • Mittal, Shivika
  • Dai, Hancheng
  • Fujimori, Shinichiro
  • Masui, Toshihiko

Abstract

Renewable energy has a critical role in limiting the greenhouse gas (GHG) emissions. This paper assesses the implication of aligning renewable energy deployment target with national emission reduction target for mitigation cost. The assessment methodology uses Asia-Pacific Integrated Assessment/computable general equilibrium (AIM/CGE) model to determine the mitigation cost in terms of GDP and welfare loss under alternative renewable targets in different climate-constrained scenarios. A range of country-specific emission constraints is taken to address the uncertainties related to global emission pathway and emission entitlement scheme. Comparative results show that China needs to increase its share of non-fossil fuel significantly in the primary energy mix to achieve the stringent emission reduction target compared to India. The mitigation cost in terms of economic and welfare loss can be reduced by increasing the penetration of the renewable energy to achieve the same emission reduction target. The modeling results show that coordinated national climate and renewable energy policies help to achieve the GHG emission reduction target in an efficient and cost-effective manner.

Suggested Citation

  • Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:301-313
    DOI: 10.1016/j.apenergy.2015.12.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916000118
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Sheng & Tong, Qing & Yu, Sha & Wang, Yu & Chai, Qimin & Zhang, Xiliang, 2012. "Role of non-fossil energy in meeting China's energy and climate target for 2020," Energy Policy, Elsevier, vol. 51(C), pages 14-19.
    2. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    3. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    4. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    5. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    6. Shuwei Zhang & Nico Bauer, 2013. "Utilization of the non-fossil fuel target and its implications in China," Climate Policy, Taylor & Francis Journals, vol. 13(3), pages 328-344, May.
    7. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    8. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    9. Boudri, J. C. & Hordijk, L. & Kroeze, C. & Amann, M. & Cofala, J. & Bertok, I. & Junfeng, Li & Lin, Dai & Shuang, Zhen & Runquing, Hu & Panwar, T. S. & Gupta, S. & Singh, D. & Kumar, A. & Vipradas, M., 2002. "The potential contribution of renewable energy in air pollution abatement in China and India," Energy Policy, Elsevier, vol. 30(5), pages 409-424, April.
    10. Yuan, Jiahai & Xu, Yan & Zhang, Xingping & Hu, Zheng & Xu, Ming, 2014. "China's 2020 clean energy target: Consistency, pathways and policy implications," Energy Policy, Elsevier, vol. 65(C), pages 692-700.
    11. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    12. Saveyn, Bert & Paroussos, Leonidas & Ciscar, Juan-Carlos, 2012. "Economic analysis of a low carbon path to 2050: A case for China, India and Japan," Energy Economics, Elsevier, vol. 34(S3), pages 451-458.
    13. Santalco, Aldo, 2012. "How and when China will exceed its renewable energy deployment targets," Energy Policy, Elsevier, vol. 51(C), pages 652-661.
    14. Schmid, Gisèle, 2012. "The development of renewable energy power in India: Which policies have been effective?," Energy Policy, Elsevier, vol. 45(C), pages 317-326.
    15. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    16. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    17. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    18. Shrimali, Gireesh & Tirumalachetty, Sumala, 2013. "Renewable energy certificate markets in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 702-716.
    19. Clarke, John F. & Edmonds, J. A., 1993. "Modelling energy technologies in a competitive market," Energy Economics, Elsevier, vol. 15(2), pages 123-129, April.
    20. Kroeze, Carolien & Vlasblom, Jaklien & Gupta, Joyeeta & Boudri, Christiaan & Blok, Kornelis, 2004. "The power sector in China and India: greenhouse gas emissions reduction potential and scenarios for 1990-2020," Energy Policy, Elsevier, vol. 32(1), pages 55-76, January.
    21. Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
    22. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    23. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    24. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    25. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    26. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    27. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, Open Access Journal, vol. 10(1), pages 1-15, January.
    2. repec:gam:jeners:v:11:y:2018:i:9:p:2213-:d:165487 is not listed on IDEAS
    3. repec:eee:appene:v:233-234:y:2019:i::p:196-207 is not listed on IDEAS
    4. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, Open Access Journal, vol. 9(8), pages 1-17, July.
    5. repec:eee:appene:v:235:y:2019:i:c:p:186-203 is not listed on IDEAS
    6. repec:gam:jeners:v:12:y:2019:i:3:p:349-:d:200159 is not listed on IDEAS
    7. repec:eee:enepol:v:107:y:2017:i:c:p:658-668 is not listed on IDEAS
    8. repec:gam:jeners:v:10:y:2017:i:8:p:1166-:d:107424 is not listed on IDEAS
    9. repec:eee:appene:v:227:y:2018:i:c:p:403-414 is not listed on IDEAS
    10. repec:eee:rensus:v:82:y:2018:i:p3:p:4121-4131 is not listed on IDEAS
    11. repec:eee:enepol:v:128:y:2019:i:c:p:45-56 is not listed on IDEAS
    12. repec:eee:rensus:v:81:y:2018:i:p2:p:2955-2966 is not listed on IDEAS
    13. repec:eee:appene:v:237:y:2019:i:c:p:25-35 is not listed on IDEAS
    14. repec:gam:jeners:v:11:y:2018:i:9:p:2296-:d:166849 is not listed on IDEAS
    15. repec:eee:appene:v:228:y:2018:i:c:p:1994-2008 is not listed on IDEAS
    16. repec:eee:energy:v:157:y:2018:i:c:p:31-44 is not listed on IDEAS
    17. repec:eee:appene:v:196:y:2017:i:c:p:162-169 is not listed on IDEAS
    18. Jeslin Drusila Nesamalar, J. & Venkatesh, P. & Charles Raja, S., 2017. "The drive of renewable energy in Tamilnadu: Status, barriers and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 115-124.
    19. repec:eee:appene:v:196:y:2017:i:c:p:180-189 is not listed on IDEAS
    20. repec:eee:renene:v:114:y:2017:i:pb:p:1294-1305 is not listed on IDEAS
    21. repec:eee:appene:v:204:y:2017:i:c:p:509-524 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:301-313. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.