IDEAS home Printed from
   My bibliography  Save this article

China's 2020 clean energy target: Consistency, pathways and policy implications


  • Yuan, Jiahai
  • Xu, Yan
  • Zhang, Xingping
  • Hu, Zheng
  • Xu, Ming


China has proposed its 2020 clean energy target together with the climate change target of reducing CO2 intensity of the economy by 40–45% below the 2005 level. This article investigates the feasibility of these targets by testing their consistency under possible economic development scenarios. We analyse these targets from two perspectives: consistency with the overall economic growth and consistency with the international society's expectation on China's greenhouse gas (GHG) abatement responsibilities. The main findings are: under the recently announced 2020 target of gross domestic product (GDP) that is double the 2010 level, the adoption of a 15% clean energy target could result in excessive primary energy demand; and then with 40–45% GDP CO2 intensity reduction, CO2 emissions in 2020 could substantially exceed the International Energy Agency (IEA) 450ppm scenario for China. Thus we propose a 17% clean energy target that can reconcile the domestic plan with international expectation. Our article also outlines the pathways to realise clean energy development into 2020 and proposes policy recommendations.

Suggested Citation

  • Yuan, Jiahai & Xu, Yan & Zhang, Xingping & Hu, Zheng & Xu, Ming, 2014. "China's 2020 clean energy target: Consistency, pathways and policy implications," Energy Policy, Elsevier, vol. 65(C), pages 692-700.
  • Handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:692-700
    DOI: 10.1016/j.enpol.2013.09.061

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    2. Stern, David I. & Jotzo, Frank, 2010. "How ambitious are China and India's emissions intensity targets?," Energy Policy, Elsevier, vol. 38(11), pages 6776-6783, November.
    3. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    4. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    5. Michinori Uwasu & Yi Jiang & Tatsuyoshi Saijo, 2010. "On the Chinese Carbon Reduction Target," Sustainability, MDPI, Open Access Journal, vol. 2(6), pages 1-5, June.
    6. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    7. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    8. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    9. Zhao, Xiaoli & Wang, Feng & Wang, Mei, 2012. "Large-scale utilization of wind power in China: Obstacles of conflict between market and planning," Energy Policy, Elsevier, vol. 48(C), pages 222-232.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhang, Wei & Yang, Jun & Sheng, Pengfei & Li, Xuesong & Wang, Xingwu, 2014. "Potential cooperation in renewable energy between China and the United States of America," Energy Policy, Elsevier, vol. 75(C), pages 403-409.
    2. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    3. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    4. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
    5. Liu, Yuanxin & Zheng, Ruijin & Chen, Sisi & Yuan, Jiahai, 2019. "The economy of wind-integrated-energy-storage projects in China's upcoming power market: A real options approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    6. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    7. Andersson, Fredrik N.G. & Opper, Sonja & Khalid, Usman, 2018. "Are capitalists green? Firm ownership and provincial CO2 emissions in China," Energy Policy, Elsevier, vol. 123(C), pages 349-359.
    8. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    9. Pareja-Alcaraz, Pablo, 2017. "Chinese investments in Southern Europe's energy sectors: Similarities and divergences in China's strategies in Greece, Italy, Portugal and Spain," Energy Policy, Elsevier, vol. 101(C), pages 700-710.
    10. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    11. Cai, Jialiang & Yin, He & Varis, Olli, 2016. "Impacts of industrial transition on water use intensity and energy-related carbon intensity in China: A spatio-temporal analysis during 2003–2012," Applied Energy, Elsevier, vol. 183(C), pages 1112-1122.
    12. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    13. Zhang, Ling & Zhou, Peng & Newton, Sidney & Fang, Jian-xin & Zhou, De-qun & Zhang, Lu-ping, 2015. "Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method," Energy, Elsevier, vol. 90(P1), pages 953-964.
    14. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    15. Wen, Quan & Hong, Jingke & Liu, Guiwen & Xu, Pengpeng & Tang, Miaohan & Li, Zhongfu, 2020. "Regional efficiency disparities in China’s construction sector: A combination of multiregional input–output and data envelopment analyses," Applied Energy, Elsevier, vol. 257(C).
    16. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    17. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    18. Wu, Yunna & Xiao, Xinli & Song, Zongyun, 2017. "Competitiveness analysis of coal industry in China: A diamond model study," Resources Policy, Elsevier, vol. 52(C), pages 39-53.

    More about this item


    Clean energy development; CO2 emissions; China;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:692-700. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.