IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp627-637.html
   My bibliography  Save this article

The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model

Author

Listed:
  • Dai, Hancheng
  • Fujimori, Shinichiro
  • Silva Herran, Diego
  • Shiraki, Hiroto
  • Masui, Toshihiko
  • Matsuoka, Yuzuru

Abstract

The curtailment and storage associated with the fluctuation of electricity supplied by variable renewable energy (VRE) may limit its penetration into electricity systems. Therefore, these factors need to be explicitly treated in the integrated assessment models (IAMs). This study improves the representation of curtailment and storage of VRE in a computable general equilibrium (CGE) model. With the data generated from an hourly power sector model, curtailment and storage of VRE electricity are treated as a function of the shares of solar and wind in the electricity mix. This relationship is incorporated into a CGE model and we also updated the VRE costs and resource potential. The results show that with such improvement, by 2100, in a 450 ppm atmospheric CO2 equivalent concentration (henceforth ppm) scenario, some electricity generated from VRE is either curtailed (2.1%) or needs to be stored (2.9%). In contrast, if VRE fluctuation is not considered, the long-term global economic cost of carbon mitigation is significantly underestimated (by 52%) in the same scenario. Conversely, updating the VRE costs and resource potential leads to a decrease in mitigation costs. Our simulation implies that the fluctuation of VRE cannot be ignored and needs to be incorporated into CGE models. Moreover, in addition to storage with batteries, many other options are available to reduce curtailment of VRE. The top-down type CGE model has limitations to fully incorporate all aspects due to its limited spatial, temporal, and technological resolution.

Suggested Citation

  • Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:627-637
    DOI: 10.1016/j.eneco.2016.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316300391
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    2. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    3. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    4. Houghton, T. & Cruden, A., 2011. "Exploring future hydrogen development and the impact of policy: A novel investment-led approach," Energy Policy, Elsevier, vol. 39(3), pages 1318-1329, March.
    5. Dursun, Bahtiyar & Alboyaci, Bora & Gokcol, Cihan, 2011. "Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand," Energy, Elsevier, vol. 36(2), pages 864-872.
    6. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    7. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    8. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    9. Bleischwitz, Raimund & Bader, Nikolas, 2010. "Policies for the transition towards a hydrogen economy: the EU case," Energy Policy, Elsevier, vol. 38(10), pages 5388-5398, October.
    10. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    12. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    13. Akashi, Osamu & Hijioka, Yasuaki & Masui, Toshihiko & Hanaoka, Tatsuya & Kainuma, Mikiko, 2012. "GHG emission scenarios in Asia and the world: The key technologies for significant reduction," Energy Economics, Elsevier, vol. 34(S3), pages 346-358.
    14. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    15. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    16. Vieira, Filipe & Ramos, Helena M., 2009. "Optimization of operational planning for wind/hydro hybrid water supply systems," Renewable Energy, Elsevier, vol. 34(3), pages 928-936.
    17. repec:eee:eneeco:v:64:y:2017:i:c:p:665-684 is not listed on IDEAS
    18. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    19. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    20. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    21. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:enepol:v:118:y:2018:i:c:p:390-403 is not listed on IDEAS
    2. repec:eee:eneeco:v:64:y:2017:i:c:p:542-551 is not listed on IDEAS
    3. repec:eee:eneeco:v:74:y:2018:i:c:p:917-926 is not listed on IDEAS
    4. repec:eee:eneeco:v:68:y:2017:i:c:p:478-489 is not listed on IDEAS
    5. repec:eee:appene:v:205:y:2017:i:c:p:210-224 is not listed on IDEAS
    6. repec:eee:appene:v:227:y:2018:i:c:p:384-392 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:627-637. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.