IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v180y2023ics1366554523003393.html
   My bibliography  Save this article

Optimization of integrated energy system considering multi-energy collaboration in carbon-free hydrogen port

Author

Listed:
  • Zhang, Qian
  • Qi, Jingwen
  • Zhen, Lu

Abstract

Renewable energy is highly efficient, clean, and low-carbon, and it has become the key to energy transformation. The lack of renewable energy consumption capacity has become a major restriction on the development of renewable energy generation industry, and the application of hydrogen storage technology to port integrated energy systems (IES) is considered an effective solution to the problem of grid-connection of renewable energies. The application of hydrogen storage technology to improve renewable energy consumption and integrated energy use has important research significance. This paper studies optimization of the IES considering multi-energy collaboration in carbon-free hydrogen ports. Security constrained unit commitment (SCUC) is a key issue in the operation of IES. A mixed integer linear programming (MILP) model is constructed with objectives of minimizing the operating cost of energy system. Furthermore, a customized enhanced particle swarm optimization (PSO) method is designed to solve the SCUC optimization problem. Enhanced PSO can obtain satisfying solutions in large-scale instances within a short time. Extensive numerical experiments have been conducted and the results demonstrate the applicability and efficiency of enhanced PSO in solving problems.

Suggested Citation

  • Zhang, Qian & Qi, Jingwen & Zhen, Lu, 2023. "Optimization of integrated energy system considering multi-energy collaboration in carbon-free hydrogen port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003393
    DOI: 10.1016/j.tre.2023.103351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.