IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319518.html
   My bibliography  Save this article

Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees

Author

Listed:
  • Feng, Sida
  • Magee, Christopher L.

Abstract

Technology innovation in electric vehicles is of significant interest to researchers, companies and policy-makers of many countries. Electric vehicles integrate various kinds of distinct technologies and decomposing the overall electric vehicle field into several key domains allows determination of more detailed, valuable information. To provide both broader and more detailed information about technology development in the EV field, unlike most previous studies on electric vehicle innovation which analyzed this field as a whole, this research decomposed the electric vehicle field into domains, which are power electronics, battery, electric motor as well as charging and discharging subdomains and then further extracted the subdomains. Furthermore, In addition, the improvement rates, technology trajectories and major patent assignees in these domains and key subdomains are determined using patents extracted for each domain from the US patent system. The main findings are: (1) The estimated rates of performance improvement per year are 18.3% for power electronics, 7.7% for electric motors, 23.8% for charging and discharging and 11.7% for batteries. The relatively lower improvement rate for electric motors and batteries suggests their potential to hinder the popularization of electric vehicles. Besides, as for the subdomains, the relatively higher technology improvement rate of lithium-ion battery or permanent magnet motor in its domain supports the current trend of battery or motor type quantitively from a patent analysis view. A possible implication for the policy makers encouraging EV development is to issue more incentive plans for innovations in the battery and electric motor domains, especially for lithium-ion battery and permanent magnet motor. (2) The technology trajectories depict the development of four critical subdomains over time, which quantitively proves the focuses and emerging topics of the subdomains and thereby provide guidance to research topic selection. For example, the silicon negative electrode is a promising topic in the subdomain of lithium-ion battery. (3) The key players in the four critical subdomains appear to be Toyota and Honda in hybrid power electronics, E-One Moli Energy Corp in lithium-ion batteries, Panasonic in Permanent Magnet motors and Toyota in discharging. The key players found by the main path method from the view of innovation are also important players in EV from the market view. Other market participants should pay more attention to the adjustment of business strategy of these companies to monitor the market, and make effort to invent important EV related technologies.

Suggested Citation

  • Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319518
    DOI: 10.1016/j.apenergy.2019.114264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher L. Benson & Christopher L. Magee, 2015. "Technology structural implications from the extension of a patent search method," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1965-1985, March.
    2. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    3. Adnan, Nadia & Md Nordin, Shahrina & Hadi Amini, M. & Langove, Naseebullah, 2018. "What make consumer sign up to PHEVs? Predicting Malaysian consumer behavior in adoption of PHEVs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 259-278.
    4. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    5. Xiang, Xi-Yao & Cai, Hong & Lam, Shui & Pei, Yun-Long, 2013. "International knowledge spillover through co-inventors: An empirical study using Chinese assignees' patent data," Technological Forecasting and Social Change, Elsevier, vol. 80(1), pages 161-174.
    6. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    7. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    8. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    9. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    10. Sun, Huaping & Geng, Yong & Hu, Lingxiang & Shi, Longyu & Xu, Tong, 2018. "Measuring China's new energy vehicle patents: A social network analysis approach," Energy, Elsevier, vol. 153(C), pages 685-693.
    11. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    12. Huang, Mu-Hsuan & Chang, Han-Wen & Chen, Dar-Zen, 2012. "The trend of concentration in scientific research and technological innovation: A reduction of the predominant role of the U.S. in world research & technology," Journal of Informetrics, Elsevier, vol. 6(4), pages 457-468.
    13. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    14. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    15. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    16. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    17. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    18. Wei, Yi-Ming & Kang, Jia-Ning & Yu, Bi-Ying & Liao, Hua & Du, Yun-Fei, 2017. "A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry," Applied Energy, Elsevier, vol. 205(C), pages 769-780.
    19. Jae Ha Gwak & So Young Sohn, 2018. "A novel approach to explore patent development paths for subfield technologies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 410-419, March.
    20. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    21. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(1), pages 128-159, March.
    22. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    23. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    24. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
    25. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    26. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    27. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    28. Byoungwoo Kang & Gerbrand Ceder, 2009. "Battery materials for ultrafast charging and discharging," Nature, Nature, vol. 458(7235), pages 190-193, March.
    29. Kumar, M. Satyendra & Revankar, Shripad T., 2017. "Development scheme and key technology of an electric vehicle: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1266-1285.
    30. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    31. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    32. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    33. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    34. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    35. Ding, Cherng G. & Hung, Wen-Chi & Lee, Meng-Che & Wang, Hung-Jui, 2017. "Exploring paper characteristics that facilitate the knowledge flow from science to technology," Journal of Informetrics, Elsevier, vol. 11(1), pages 244-256.
    36. Wikström, Martina & Hansson, Lisa & Alvfors, Per, 2014. "Socio-technical experiences from electric vehicle utilisation in commercial fleets," Applied Energy, Elsevier, vol. 123(C), pages 82-93.
    37. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    38. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    39. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    40. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    41. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    42. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    43. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    44. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    45. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    46. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    47. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    48. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    49. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    50. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    51. Jiaming Jiang & Rajeev K. Goel & Xingyuan Zhang, 2019. "Knowledge flows from business method software patents: influence of firms’ global social networks," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1070-1096, August.
    52. Sierzchula, William & Nemet, Gregory, 2015. "Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 213-224.
    53. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    54. Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
    55. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    56. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    57. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijie Feng & Kehui Liu & Jinfeng Wang & Kuo-Yi Lin & Ke Zhang & Luyao Zhang, 2022. "Identifying Promising Technologies of Electric Vehicles from the Perspective of Market and Technical Attributes," Energies, MDPI, vol. 15(20), pages 1-22, October.
    2. Diego Castanho & Marcio Guerreiro & Ludmila Silva & Jony Eckert & Thiago Antonini Alves & Yara de Souza Tadano & Sergio Luiz Stevan & Hugo Valadares Siqueira & Fernanda Cristina Corrêa, 2022. "Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization," Energies, MDPI, vol. 15(19), pages 1-21, September.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Andrea Temporelli & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature," Energies, MDPI, vol. 13(11), pages 1-13, June.
    5. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2023. "Analysis of Smart Energy Systems and High Participation of V2G Impact for the Ecuadorian 100% Renewable Energy System by 2050," Energies, MDPI, vol. 16(10), pages 1-24, May.
    6. Zia Muhammad & Zahid Anwar & Bilal Saleem & Jahanzeb Shahid, 2023. "Emerging Cybersecurity and Privacy Threats to Electric Vehicles and Their Impact on Human and Environmental Sustainability," Energies, MDPI, vol. 16(3), pages 1-30, January.
    7. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    8. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    9. Yang, Rui & Tang, Wansheng & Zhang, Jianxiong, 2021. "Technology improvement strategy for green products under competition: The role of government subsidy," European Journal of Operational Research, Elsevier, vol. 289(2), pages 553-568.
    10. Ding, Xiaofeng & Lu, Peng & Shan, Zhenyu, 2021. "A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    11. Gobbi, Massimiliano & Sattar, Aqeab & Palazzetti, Roberto & Mastinu, Gianpiero, 2024. "Traction motors for electric vehicles: Maximization of mechanical efficiency – A review," Applied Energy, Elsevier, vol. 357(C).
    12. Xigang Yuan & Fei Tang & Dalin Zhang & Xiaoqing Zhang, 2021. "Green Remanufacturer’s Mixed Collection Channel Strategy Considering Enterprise’s Environmental Responsibility and the Fairness Concern in Reverse Green Supply Chain," IJERPH, MDPI, vol. 18(7), pages 1-18, March.
    13. Cipek, Mihael & Kasać, Josip & Pavković, Danijel & Zorc, Davor, 2020. "A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train," Applied Energy, Elsevier, vol. 276(C).
    14. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    15. Tanvi Maheshwari & Kay W. Axhausen, 2021. "How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    16. Kuan, Chung-Huei & Lin, Jia-Tian & Chen, Dar-Zen, 2021. "Characterizing Patent Assignees by Their Structural Positions Relative to a Field’s Evolutionary Trajectory," Journal of Informetrics, Elsevier, vol. 15(4).
    17. Vimal, K.E.K. & Goel, Pooja & Sharma, Nitika & Mathiyazhagan, K. & Luthra, Sunil, 2024. "Where there is a will there is a way: A strategy analysis for electric vehicles sales in India," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    2. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    3. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    4. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    5. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Anuraag Singh & Giorgio Triulzi & Christopher L. Magee, 2020. "Technological improvement rate estimates for all technologies: Use of patent data and an extended domain description," Papers 2004.13919, arXiv.org.
    8. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
    9. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    10. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    11. Zhang, Jiahe & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Li, Haijun, 2023. "Hybrid characteristics of heterogeneous traffic flow mixed with electric vehicles considering the amplitude of acceleration and deceleration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    12. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    13. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    14. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.
    15. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    16. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    19. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    20. Christopher L. Benson & Christopher L. Magee, 2018. "Data-Driven Investment Decision-Making: Applying Moore's Law and S-Curves to Business Strategies," Papers 1805.06339, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.