IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp135-150.html
   My bibliography  Save this article

Hybrid electric vehicles and their challenges: A review

Author

Listed:
  • Hannan, M.A.
  • Azidin, F.A.
  • Mohamed, A.

Abstract

There are numbers of alternative energy resources being studied for hybrid vehicles as preparation to replace the exhausted supply of petroleum worldwide. The use of fossil fuel in the vehicles is a rising concern due to its harmful environmental effects. Among other sources battery, fuel cell (FC), super capacitors (SC) and photovoltaic cell i.e. solar are studied for vehicle application. Combinations of these sources of renewable energies can be applied for hybrid electric vehicle (HEV) for next generation of transportation. Various aspects and techniques of HEV from energy management system (EMS), power conditioning and propulsion system are explored in this paper. Other related fields of HEV such as DC machine and vehicle system are also included. Various type models and algorithms derived from simulation and experiment are explained in details. The performances of the various combination of HEV system are summarized in the table along with relevant references. This paper provides comprehensive survey of hybrid electric vehicle on their source combination, models, energy management system (EMS) etc. developed by various researchers. From the rigorous review, it is observed that the existing technologies more or less can capable to perform HEV well; however, the reliability and the intelligent systems are still not up to the mark. Accordingly, this review have been lighted many factors, challenges and problems sustainable next generation hybrid vehicle.

Suggested Citation

  • Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:135-150
    DOI: 10.1016/j.rser.2013.08.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    3. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    4. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    5. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    6. Al-Baghdadi, Maher A.R. Sadiq, 2005. "Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations," Renewable Energy, Elsevier, vol. 30(10), pages 1587-1599.
    7. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    8. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    9. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    10. García, Carlos A. & Manzini, Fabio & Islas, Jorge, 2010. "Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3032-3040, December.
    11. Wang, Xiaoming & Shang, Jianzhong & Luo, Zirong & Tang, Li & Zhang, Xiangpo & Li, Juan, 2012. "Reviews of power systems and environmental energy conversion for unmanned underwater vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1958-1970.
    12. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    13. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    14. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    15. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    16. Hwang, Jenn Jiang, 2010. "Sustainable transport strategy for promoting zero-emission electric scooters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1390-1399, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    4. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    5. Roman Niestrój & Tomasz Rogala & Wojciech Skarka, 2020. "An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack," Energies, MDPI, vol. 13(13), pages 1-31, July.
    6. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    7. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    8. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    9. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    10. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    11. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    12. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    13. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    14. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    15. Becherif, M. & Ramadan, H.S. & Ayad, M.Y. & Hissel, D. & Desideri, U. & Antonelli, M., 2017. "Efficient start–up energy management via nonlinear control for eco–traction systems," Applied Energy, Elsevier, vol. 187(C), pages 899-909.
    16. Augustus De Melo, Conrado & De Martino Jannuzzi, Gilberto & De Mello Santana, Paulo Henrique, 2018. "Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1166-1174.
    17. Aamir, Muhammad & Ahmed Kalwar, Kafeel & Mekhilef, Saad, 2016. "Review: Uninterruptible Power Supply (UPS) system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1395-1410.
    18. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    19. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    20. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos A. & Jurado, Francisco, 2014. "Improving grid integration of wind turbines by using secondary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 194-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:135-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.