IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v80y2023ics0301420722005736.html
   My bibliography  Save this article

Identifying technological trajectories in the mining sector using patent citation networks

Author

Listed:
  • Alessandri, Enrico

Abstract

This paper uses patent citation networks to study technological change in the mining industry between 1970 and 2015. The analysis is undertaken at both the aggregate level by jointly considering all mining-related technological fields, and at the micro-level of patents in nine sub-fields, representing specific technological “sub-trajectories”.

Suggested Citation

  • Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722005736
    DOI: 10.1016/j.resourpol.2022.103130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722005736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.103130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Archibugi, Daniele & Pianta, Mario, 1992. "Specialization and size of technological activities in industrial countries: The analysis of patent data," Research Policy, Elsevier, vol. 21(1), pages 79-93, February.
    2. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    3. Jeffrey L. Funk, 2003. "The Origins of New Industries: The Case of the Mobile Internet," Discussion Paper Series 134, Research Institute for Economics & Business Administration, Kobe University.
    4. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    5. Iizuka, Michiko & Pietrobelli, Carlo & Vargas, Fernando, 2019. "The Potential for innovation in mining value chains. Evidence from Latin America," MERIT Working Papers 2019-033, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Kurt Hafner, 2008. "The pattern of international patenting and technology diffusion," Applied Economics, Taylor & Francis Journals, vol. 40(21), pages 2819-2837.
    7. Katz, Jorge & Pietrobelli, Carlo, 2018. "Natural resource based growth, global value chains and domestic capabilities in the mining industry," Resources Policy, Elsevier, vol. 58(C), pages 11-20.
    8. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    9. Fernandez, Viviana, 2021. "Patenting trends in the mining industry," Resources Policy, Elsevier, vol. 72(C).
    10. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    11. Enrico Alessandri, 2021. "Innovation and trade patterns in the Latin American mining sector," Working Papers 2103, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2021.
    12. Durand, Thomas, 1992. "Dual technological trees: Assessing the intensity and strategic significance of technological change," Research Policy, Elsevier, vol. 21(4), pages 361-380, August.
    13. Pérez, Carlota, 2010. "Technological dynamism and social inclusion in Latin America: a resource-based production development strategy," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    14. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    15. Humphreys, D., 2001. "Sustainable development: can the mining industry afford it?," Resources Policy, Elsevier, vol. 27(1), pages 1-7, March.
    16. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    17. Anabel Marin & Lizbeth Navas-Alemán & Carlota Perez, 2015. "Natural Resource Industries As a Platform for the Development of Knowledge Intensive Industries," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 106(2), pages 154-168, April.
    18. Ulrich Schmoch & Birgit Gehrke, 2022. "China’s technological performance as reflected in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 299-317, January.
    19. Bartos, Paul J., 2007. "Is mining a high-tech industry: Investigations into innovation and productivity advance," Resources Policy, Elsevier, vol. 32(4), pages 149-158, December.
    20. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    21. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    22. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    23. Carlota Perez, 2015. "The new context for industrializing around natural resources: an opportunity for Latin America (and other resource rich countries)?," The Other Canon Foundation and Tallinn University of Technology Working Papers in Technology Governance and Economic Dynamics 62, TUT Ragnar Nurkse Department of Innovation and Governance.
    24. Martinelli, Arianna, 2012. "An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry," Research Policy, Elsevier, vol. 41(2), pages 414-429.
    25. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    26. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    27. Bin Xu & Eric CHiang, 2005. "Trade, Patents and International Technology Diffusion," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 14(1), pages 115-135.
    28. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    29. Nomaler, Onder & Verspagen, Bart, 2016. "River deep, mountain high: Of long-run knowledge trajectories within and between innovation clusters," MERIT Working Papers 2016-048, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    30. Lavopa, Alejandro & Szirmai, Adam, 2018. "Structural modernisation and development traps. An empirical approach," World Development, Elsevier, vol. 112(C), pages 59-73.
    31. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    32. Viviana Fernandez, 2021. "Cross-country concentration and specialization of mining inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6715-6759, August.
    33. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    34. Kash, Don E. & Rycoft, Robert W., 2000. "Patterns of innovating complex technologies: a framework for adaptive network strategies," Research Policy, Elsevier, vol. 29(7-8), pages 819-831, August.
    35. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    36. Eggert, Roderick G., 1993. "Managing for successful mineral exploration : A review," Resources Policy, Elsevier, vol. 19(3), pages 173-176, September.
    37. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    38. Martin Kalthaus, 2019. "Identifying technological sub-trajectories in patent data: the case of photovoltaics," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(4), pages 407-434, May.
    39. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    40. Önder Nomaler & Bart Verspagen, 2016. "River deep, mountain high: of long run knowledge trajectories within and between innovation clusters1," Journal of Economic Geography, Oxford University Press, vol. 16(6), pages 1259-1278.
    41. Marín, Anabel & Navas-Alemán, Lizbeth & Perez, Carlota, 2015. "Natural resource industries as a platform for the development of knowledge intensive industries," Nülan. Deposited Documents 2689, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    42. Eaton, Jonathan & Kortum, Samuel, 1999. "International Technology Diffusion: Theory and Measurement," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 537-570, August.
    43. Nomaler, Onder & Verspagen, Bart, 2019. "Greentech homophily and path dependence in a large patent citation network," MERIT Working Papers 2019-051, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    44. Haraguchi, Nobuya & Cheng, Charles Fang Chin & Smeets, Eveline, 2017. "The Importance of Manufacturing in Economic Development: Has This Changed?," World Development, Elsevier, vol. 93(C), pages 293-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    2. Muhamed Kudic & Mariia Shkolnykova, 2020. "From biotech to bioeconomy: New empirical evidence on the technological transition to plant-based bioeconomy based on patent data," Bremen Papers on Economics & Innovation 2002, University of Bremen, Faculty of Business Studies and Economics.
    3. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    4. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    5. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    6. Fang Han & Sejun Yoon & Nagarajan Raghavan & Hyunseok Park, 2022. "Investigating Company’s Technical Development Directions Based on Internal Knowledge Inheritance and Inventor Capabilities: The Case of Samsung Electronics," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    7. Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    9. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    10. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    11. Shih-Chang Hung & John S. Liu & Louis Y. Y. Lu & Yu-Chiang Tseng, 2014. "Technological change in lithium iron phosphate battery: the key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 97-120, July.
    12. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    13. Blandinieres, Florence, 2019. "Anatomy of the medical innovation process: What are the consequences of replicability issues on innovation?," ZEW Discussion Papers 19-011, ZEW - Leibniz Centre for European Economic Research.
    14. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    15. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    16. Ichiro Watanabe & Soichiro Takagi, 2021. "Technological Trajectory Analysis of Patent Citation Networks: Examining the Technological Evolution of Computer Graphic Processing Systems," The Review of Socionetwork Strategies, Springer, vol. 15(1), pages 1-25, June.
    17. Hwang, Seonho & Shin, Juneseuk, 2019. "Extending technological trajectories to latest technological changes by overcoming time lags," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 142-153.
    18. Ichiro Watanabe & Soichiro Takagi, 2022. "NK model-based analysis of technological trajectories: a study on the technological field of computer graphic processing systems," Evolutionary and Institutional Economics Review, Springer, vol. 19(1), pages 119-140, April.
    19. Martin Kalthaus, 2017. "Identifying technological sub-trajectories in photovoltaic patents," Jena Economics Research Papers 2017-010, Friedrich-Schiller-University Jena.
    20. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).

    More about this item

    Keywords

    Technological trajectories; Mining technologies; Geography of innovation; Patents; International technological frontier;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • L72 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Other Nonrenewable Resources
    • F23 - International Economics - - International Factor Movements and International Business - - - Multinational Firms; International Business
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722005736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.