IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3013-d514062.html
   My bibliography  Save this article

How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies

Author

Listed:
  • Tanvi Maheshwari

    (Future Cities Laboratory Singapore, Singapore-ETH Centre, Singapore 138602, Singapore)

  • Kay W. Axhausen

    (Institute for Transport Planning and Systems, ETH Zürich, 8093 Zürich, Switzerland)

Abstract

Recent developments in vehicle automation, connectivity, electro-mobility and ridesharing are expected to transform urban mobility patterns and reshape cities. There is enormous uncertainty about how these technological developments, collectively referred to as the ‘technological shift in transportation’, may impact cities. This paper examines whether the technological shift in transportation will lead cities on a path to sustainability in five aspects—traffic flow, space use, energy consumption, transit and active mobility and economic affordability—through a review of 34 quantitative studies. We find that these studies backed by analytical and simulation models can provide more precise answers, and their results tend to contradict each other based on starting conditions, modelling methods and other driving factors. These driving factors fall within four categories: technological integration, policy, operations and urban planning. The interaction of these driving forces will determine if the technological shift improves transportation sustainability or is detrimental for the city in the long term.

Suggested Citation

  • Tanvi Maheshwari & Kay W. Axhausen, 2021. "How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3013-:d:514062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsrrp:qt23r1h80t is not listed on IDEAS
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    4. Su-Yen Chen & Hsin-Yu Kuo & Chiachun Lee, 2020. "Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    5. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    6. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad A. R. Abdeen & Ansar Yasar & Mohamed Benaida & Tarek Sheltami & Dimitrios Zavantis & Youssef El-Hansali, 2022. "Evaluating the Impacts of Autonomous Vehicles’ Market Penetration on a Complex Urban Freeway during Autonomous Vehicles’ Transition Period," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    2. Darius Bazaras & Margarita Išoraitė & Kristina Vaičiūtė, 2022. "A Study of the Relationship between Marketing and Investment in Technology Development in Transport Company," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    3. Tobias Biehle, 2022. "Social Sustainable Urban Air Mobility in Europe," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    4. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc-Olivier Pepin & Georges A. Tanguay, 2019. "Estimation of Car Trips Generated by the Arrival of Autonomous Vehicles in the Montreal Metropolitan Area," CIRANO Working Papers 2019s-17, CIRANO.
    2. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    5. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    6. Wang, Xianing & Lu, Linjun & Zhang, Zhan & Wang, Ying & Li, Haoming, 2025. "Introducing the vehicle-infrastructure cooperative control system by quantifying the benefits for the scenario of signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    7. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    8. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    9. Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
    10. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    11. Raphael Hoerler & Fabian Haerri & Merja Hoppe, 2019. "New Solutions in Sustainable Commuting—The Attitudes and Experience of European Stakeholders and Experts in Switzerland," Social Sciences, MDPI, vol. 8(7), pages 1-19, July.
    12. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    13. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    14. Zia Wadud & Muhammad Adeel & Jillian Anable, 2024. "Understanding the large role of long-distance travel in carbon emissions from passenger travel," Nature Energy, Nature, vol. 9(9), pages 1129-1138, September.
    15. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    16. Alatawneh, Anas & Torok, Adam, 2025. "Projecting AV sales in the EU-27 and UK: Insights from Euro emission standards and historical trends," Transport Policy, Elsevier, vol. 163(C), pages 91-101.
    17. Outay, Fatma & Mengash, Hanan Abdullah & Adnan, Muhammad, 2020. "Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 116-129.
    18. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    20. Hasanburak Yucel & Murat Ergün & Gozde Bakioglu, 2025. "Will Conventional Public Transport Users Adopt Autonomous Public Transport? A Model Integrating UTAUT Model and Satisfaction–Loyalty Model," Sustainability, MDPI, vol. 17(20), pages 1-31, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3013-:d:514062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.