IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v158y2022icp75-94.html
   My bibliography  Save this article

Operational speed strategy opportunities for autonomous trucking on highways

Author

Listed:
  • Bray, Garrett
  • Cebon, David

Abstract

This study examines the potential for cost and carbon emission reduction for autonomous trucks to adopt lower peak speeds than today's human driven trucks, where the hourly cost of the driver remains a significant trade-off. Adopting lower speeds presents an indirect savings opportunity in addition to savings associated with the removal of the driver.

Suggested Citation

  • Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
  • Handle: RePEc:eee:transa:v:158:y:2022:i:c:p:75-94
    DOI: 10.1016/j.tra.2022.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422000143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hall, 2021. "Impact Nationally and Internationally," Palgrave Studies in Agricultural Economics and Food Policy, in: Agricultural Economics and Food Policy in New Zealand, chapter 0, pages 57-73, Palgrave Macmillan.
    2. Li, He & Refalo, James & Maisondieu-Laforge, Olivier, 2021. "National corruption and international banking," Global Finance Journal, Elsevier, vol. 47(C).
    3. Christine Bertram & Martin Quaas & Thorsten B. H. Reusch & Athanasios T. Vafeidis & Claudia Wolff & Wilfried Rickels, 2021. "The blue carbon wealth of nations," Nature Climate Change, Nature, vol. 11(8), pages 704-709, August.
    4. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    5. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    6. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126189, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    8. Anil K. Madhusudhanan & Xiaoxiang Na & David Cebon, 2021. "A Computationally Efficient Framework for Modelling Energy Consumption of ICE and Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-15, April.
    9. María Feo-Valero & Leandro García-Menéndez & Rodrigo Garrido-Hidalgo, 2011. "Valuing Freight Transport Time using Transport Demand Modelling: A Bibliographical Review," Transport Reviews, Taylor & Francis Journals, vol. 31(5), pages 625-651.
    10. Oecd & Nea, 2021. "National Legislative and Regulatory Activities," Nuclear Law Bulletin, OECD Publishing, vol. 2020(2).
    11. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    12. Geir H. M. Bjertnæs, 2021. "Taxation of fuel and vehicles when emissions are constrained," Discussion Papers 949, Statistics Norway, Research Department.
    13. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    14. ., 2021. "Liberty, autonomy and needs," Chapters, in: Liberal Solidarity, chapter 4, pages 64-83, Edward Elgar Publishing.
    15. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bray, Garrett & Cebon, David, 2022. "Selection of vehicle size and extent of multi-drop deliveries for autonomous goods vehicles: An assessment of potential for change," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bray, Garrett & Cebon, David, 2022. "Selection of vehicle size and extent of multi-drop deliveries for autonomous goods vehicles: An assessment of potential for change," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    3. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).
    4. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    5. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    6. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    7. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    8. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    9. Liu, Shuai & Hua, Guowei & Cheng, T.C.E. & Dong, Jingxin, 2021. "Unmanned vehicle distribution capacity sharing with demand surge under option contracts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    11. Luo, Qi & Saigal, Romesh & Chen, Zhibin & Yin, Yafeng, 2019. "Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 226-243.
    12. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
    13. Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
    14. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
    15. Jongen, Crystal & Campbell, Sandy & Saunders, Vicki & Askew, Deborah & Spurling, Geoffrey & Gueorguiev, Eva & Langham, Erika & Bainbridge, Roxanne & McCalman, Janya, 2023. "Wellbeing and mental health interventions for Indigenous children and youth: A systematic scoping review," Children and Youth Services Review, Elsevier, vol. 145(C).
    16. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    17. Mishra, Sabyasachee & Sharma, Ishant & Pani, Agnivesh, 2023. "Analyzing autonomous delivery acceptance in food deserts based on shopping travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    18. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    19. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    20. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:158:y:2022:i:c:p:75-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.