IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v126y2019icp94-113.html
   My bibliography  Save this article

Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems

Author

Listed:
  • Abe, Ryosuke

Abstract

The introduction of autonomous buses and taxis is expected to generate such benefits as cost reductions—and particularly for regional bus operations with a substantial deficit—as well as enhancing public transit accessibility through decreased trip costs. The purpose of this paper is to provide an overview of the impacts of introducing autonomous buses and taxis on metropolitan transportation systems by quantifying the costs of travel in Japan, and to discuss the potential benefits. First, this study sets the assumptions on autonomous driving technology, including its impacts on vehicle costs, the decreased labor costs for driving and safety monitoring in buses and taxis, and decreased driving stress for private car users. Next, operating costs are computed for autonomous buses and taxis in Japanese metropolitan areas. The costs of travel, or the sum of monetary and time costs, are then computed with and without vehicle automation for different trip types in high- and low-density metropolitan areas. The results highlight that the costs of public transit trips that currently have a smaller share of time costs in overall trip costs could decrease considerably due to vehicle automation. For instance, costs for 10–20-km trip lengths could decrease by 44–61% for taxi trips and 13–37% for rail/bus trips with taxi access, followed by a decrease of 6–11% for bus trips and 1–11% for rail trips with bus access. Further, private car trip costs could decrease by 11–16%. More substantial cost reductions in rail/bus trips with taxi access could occur in the case of smaller trip distances and/or in residential areas far from stations; larger reductions in rail trips with bus access could occur in low-density metropolitan areas. Finally, it is expected that vehicle automation in more fixed modes of public road transit could primarily benefit the transit industry and government, with such effects as improved labor productivity and reduced subsidies, while vehicle automation in more flexible modes could benefit metropolitan residents as well as the transit industry. This further suggests that a deficit of regional bus operations could be recovered during the transition to the full performance of autonomous buses.

Suggested Citation

  • Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
  • Handle: RePEc:eee:transa:v:126:y:2019:i:c:p:94-113
    DOI: 10.1016/j.tra.2019.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418312795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    4. Adam Stocker & Susan Shaheen, 2017. "Shared Automated Vehicles: Review of Business Models," International Transport Forum Discussion Papers 2017/09, OECD Publishing.
    5. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    6. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    7. Xiaoxia Dong & Matthew DiScenna & Erick Guerra, 2019. "Transit user perceptions of driverless buses," Transportation, Springer, vol. 46(1), pages 35-50, February.
    8. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    9. Liang, Xiao & Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 115-129.
    10. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    2. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    3. Kenichiro Chinen & Yang Sun & Mitsutaka Matsumoto & Yoon-Young Chun, 2020. "Towards a Sustainable Society through Emerging Mobility Services: A Case of Autonomous Buses," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    4. Umair Hasan & Andrew Whyte & Hamad AlJassmi, 2022. "A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    5. Yoo, Sunbin & Kumagai, Junya & Kawabata, Yuta & Keeley, Alexander & Managi, Shunsuke, 2021. "Willingness to Buy and/or Pay Disparity: Evidence from Fully Autonomous Vehicles," MPRA Paper 108882, University Library of Munich, Germany.
    6. Luigi Moccia & Duncan W. Allen & Gilbert Laporte & Andrea Spinosa, 2022. "Mode boundaries of automated metro and semi-rapid rail in urban transit," Public Transport, Springer, vol. 14(3), pages 739-802, October.
    7. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    8. Hatzenbühler, Jonas & Cats, Oded & Jenelius, Erik, 2020. "Transitioning towards the deployment of line-based autonomous buses: Consequences for service frequency and vehicle capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 491-507.
    9. Limin Tan & Changxi Ma & Xuecai Xu & Jin Xu, 2019. "Choice Behavior of Autonomous Vehicles Based on Logistic Models," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    10. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.
    11. Iman Farzin & Mohammadhossein Abbasi & Elżbieta Macioszek & Amir Reza Mamdoohi & Francesco Ciari, 2022. "Moving toward a More Sustainable Autonomous Mobility, Case of Heterogeneity in Preferences," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    12. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    13. Namgung, Hyewon & Fujiwara, Akimasa & Yamamoto, Jenny & Zhang, Junyi, 2023. "Small and medium-sized taxi firm operators' stated choices of future business models: A case study in Japan based on hybrid choice model with panel effects," Research in Transportation Economics, Elsevier, vol. 101(C).
    14. Simone Pettigrew & Leon Booth & Victoria Farrar & Branislava Godic & Julie Brown & Charles Karl & Jason Thompson, 2022. "Walking in the Era of Autonomous Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    15. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    16. Ryosuke Abe & Yusuke Kita & Daisuke Fukuda, 2020. "An Experimental Approach to Understanding the Impacts of Monitoring Methods on Use Intentions for Autonomous Vehicle Services: Survey Evidence from Japan," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    17. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    18. Darius Kianersi & Suraj Uppalapati & Anirudh Bansal & Jeremy Straub, 2022. "Evaluation of a Reputation Management Technique for Autonomous Vehicles," Future Internet, MDPI, vol. 14(2), pages 1-21, January.
    19. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    20. M. Eugenia López-Lambas & Andrea Alonso, 2019. "The Driverless Bus: An Analysis of Public Perceptions and Acceptability," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    21. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    22. Gu, Yewen & Wallace, Stein W., 2021. "Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    23. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    2. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    3. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
    4. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    6. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    7. Sungwon Lee & Devon Farmer & Jooyoung Kim & Hyun Kim, 2022. "Shared Autonomous Vehicles Competing with Shared Electric Bicycles: A Stated-Preference Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    8. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    9. Sieber, L. & Ruch, C. & Hörl, S. & Axhausen, K.W. & Frazzoli, E., 2020. "Improved public transportation in rural areas with self-driving cars: A study on the operation of Swiss train lines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 35-51.
    10. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    11. Richter, Maximilian A. & Hagenmaier, Markus & Bandte, Oliver & Parida, Vinit & Wincent, Joakim, 2022. "Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    13. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    15. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    16. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    17. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    18. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    19. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    20. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:126:y:2019:i:c:p:94-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.