IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt67f0v3zf.html
   My bibliography  Save this paper

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model

Author

Listed:
  • Barth, Matthew
  • Younglove, Theodore
  • Scora, George

Abstract

There have been significant improvements in recent years in transportation and emissions modeling, in order to better evaluate transportation operational effects and associated vehicle emissions. In particular, instantaneous or modal emissions models have been developed for a variety of light-duty vehicles. To date, most effort has focused primarily on developing these models for light-duty vehicles with less effort devoted to Heavy-Duty Diesel (HDD) vehicles. Although HDD vehicles currently make up only a fraction of the total vehicle population, they are major contributors to the emissions inventory. Furthermore, it is generally believed that transit buses and heavy trucks will offer earlier opportunities for public implementation of automated operations compared to passenger cars. Thus, there is a critical need to have robust modal emissions and fuel consumption models for HDD vehicles. This report describes a HDD truck model that is now part of a larger Comprehensive Modal Emissions Modeling (CMEM) program developed at the University of California, Riverside. Within the CMEM framework, several HDD truck fuel consumption and emission sub-models have been developed, each corresponding to a distinctive vehicle/technology category. The developed models use a parameterized physical approach where the entire emission process is broken down into different components that correspond to physical phenomena associated with vehicle operation and emission production. As part of a parallel research program, UC Riverside has developed a Mobile Emissions Research Laboratory (MERL) that can be attached to a number of heavy duty rigs to measure instantaneous (i.e., modal) emissions and fuel consumption in-situ. Using MERL, a variety of trucks were extensively tested under a wide range of operating conditions. The collected data (along with other HDD truck data sources) were then used to calibrate the HDD models. Particular care was taken to investigate and implement the effects of varying grade and the effects of variable ignition timing. In this report, background material is provide on HDD vehicle fuel consumption and emissions research, followed by a description of the vehicle testing program. The HDD vehicle model development process is then described, along with the model validation process. The model was subsequently integrated with a variety of transportation simulation modeling tools for the purposes of evaluating several automation scenarios. Particular emphasis has been placed on simulating the truck platoon scenario, where aerodynamic drafting effects can provide a significant benefit in terms of fuel and emissions savings. In addition to the modeling, experimentation has been carried out with MERL in real-world tests, examining trucks traveling in tandem with close inter-vehicle spacings. Results of these tests are also described herein.

Suggested Citation

  • Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt67f0v3zf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/67f0v3zf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dreher, David B. & Harley, Robert A., 1998. "A Fuel-Based Inventory for Heavy-Duty Diesel Truck Emissions," University of California Transportation Center, Working Papers qt46t948fp, University of California Transportation Center.
    2. Browand, Fred & McArthur, John & Radovich, Charles, 2004. "Fuel Saving Achieved in the Field Test of Two Tandem Trucks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29v570mm, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shladover, Steven & Barth, Matthew J & Zhang, Wei-Bin, 2011. "Engaging the International Community: Research on Intelligent Transportation Systems (ITS) Applications to Improve Environmental Performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4fn6f906, Institute of Transportation Studies, UC Berkeley.
    2. Lam, Hon Loong & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2011. "Model-size reduction techniques for large-scale biomass production and supply networks," Energy, Elsevier, vol. 36(8), pages 4599-4608.
    3. Shladover, Steven E. & Nowakowski, Christopher & Lu, Xiao-Yun, 2018. "Using Cooperative Adaptive Cruise Control (CACC)to Form High-Performance Vehicle Streams. Definitions, Literature Review and Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3w6920wz, Institute of Transportation Studies, UC Berkeley.
    4. Sathaye, Nakul & Harley, Robert & Madanat, Samer, 2010. "Unintended environmental impacts of nighttime freight logistics activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 642-659, October.
    5. W. Scott Wayne & Jairo A. Sandoval & Nigel N. Clark, 2009. "Emissions Benefits from Alternative Fuels and Advanced Technology in the U.S. Transit Bus Fleet," Energy & Environment, , vol. 20(4), pages 497-515, August.
    6. Yifeng Han & Tomoya Kawasaki & Shinya Hanaoka, 2022. "The Benefits of Truck Platooning with an Increasing Market Penetration: A Case Study in Japan," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    7. Tanvir Uddin Chowdhury & Peter Y. Park & Kevin Gingerich, 2022. "Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    8. Władysław Marek Hamiga & Wojciech Bronisław Ciesielka, 2022. "Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles," Energies, MDPI, vol. 15(13), pages 1-37, June.
    9. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. Feng, Yanbiao & Dong, Zuomin, 2019. "Optimal control of natural gas compression engine hybrid electric mining trucks for balanced fuel efficiency and overall emission improvement," Energy, Elsevier, vol. 189(C).
    11. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    12. Shladover, Steven E. & Lu, Xiao-Yun & Cody, Delphine, 2009. "Development and Evaluation of Selected Mobility Applications for VII: Concept of Operations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1011t5pk, Institute of Transportation Studies, UC Berkeley.
    13. Ghina H. Merhebi & Rouba Joumblat & Adel Elkordi, 2023. "Assessment of the Effect of Different Loading Combinations Due to Truck Platooning and Autonomous Vehicles on the Performance of Asphalt Pavement," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    14. Yang, Shiyan & Shladover, Steven E. & Lu, Xiao-Yun & Spring, John & Nelson, David & Ramezani, Hani, 2018. "A First Investigation of Truck Drivers’ On-the-Road Experience Using Cooperative Adaptive Cruise Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt92359572, Institute of Transportation Studies, UC Berkeley.
    15. Lu, Xiao-Yun & Shladover, Steven E, 2011. "Automated Truck Platoon Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7c55g2qs, Institute of Transportation Studies, UC Berkeley.
    16. Shi V. Liu & Fu-Lin Chen & Jianping Xue, 2017. "Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon," IJERPH, MDPI, vol. 14(12), pages 1-11, December.
    17. Shladover, Steven E., 2009. "Deployment Path Analysis for Cooperative ITS Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt14j159kn, Institute of Transportation Studies, UC Berkeley.
    18. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2018. "The identical-path truck platooning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 26-39.
    19. Shladover, Steven E & Nowakowski, Christopher & Lu, Xiao-Yun & Hoogendoorn, Raymond, 2014. "Using Cooperative Adaptive Cruise Control (CACC) to Form High-Performance Vehicle Streams," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3m89p611, Institute of Transportation Studies, UC Berkeley.
    20. Nowakowski, Christopher & Shladover, Steven E & Lu, Xiao-Yun & Thompson, Deborah & Kailas, Aravind, 2015. "Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jf9n5wm, Institute of Transportation Studies, UC Berkeley.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt67f0v3zf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.