IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4669-d847980.html
   My bibliography  Save this article

Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles

Author

Listed:
  • Władysław Marek Hamiga

    (Department of Power Systems and Environmental Protection Facilities, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Wojciech Bronisław Ciesielka

    (Department of Power Systems and Environmental Protection Facilities, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

The last decade has seen an exponential interest in conventional and unconventional energy issues. This trend has also extended to road transport issues and is driven by expectations to minimize fuel and/or energy consumption and negative environmental impact. In the global literature, much attention is focused on the work of autonomous transport, both passenger and trucks, and on the phenomena of platooning. The paper presents original aerodynamic and aeroacoustic tests of heterogeneous vehicle columns. In the work, models of a car, a van and a truck were built, followed by heterogeneous columns with different distances between the vehicles. Computational fluid dynamics (CFD) methods and two turbulence models, k − ω shear stress transport (SST) and large eddy simulation (LES), were used in this study. The study enabled the determination of drag coefficients and lift force. Application of the Ffowcs Williams–Hawkings (FW-H) analogy allowed for the determination of the distributions of sound pressure levels generated by moving vehicles and columns of vehicles. In order to verify the developed models, acoustic field measurements were made for the following passages: passenger car, van, and truck. Acoustic pressure level and A-weighted sound level (SPL) were measured in Krakow and in its vicinity. Research has shown that grouping vehicles into optimal columns and maintaining distances between vehicles using modern control systems can result in significant energy savings and reduce harmful emissions to the environment.

Suggested Citation

  • Władysław Marek Hamiga & Wojciech Bronisław Ciesielka, 2022. "Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles," Energies, MDPI, vol. 15(13), pages 1-37, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4669-:d:847980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Władysław Marek Hamiga & Wojciech Bronisław Ciesielka, 2021. "Numerical Analysis of Aeroacoustic Phenomena Generated by Truck Platoons," Sustainability, MDPI, vol. 13(24), pages 1-24, December.
    2. Sai Teja Kaluva & Aditya Pathak & Aybike Ongel, 2020. "Aerodynamic Drag Analysis of Autonomous Electric Vehicle Platoons," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Browand, Fred & McArthur, John & Radovich, Charles, 2004. "Fuel Saving Achieved in the Field Test of Two Tandem Trucks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29v570mm, Institute of Transportation Studies, UC Berkeley.
    4. Adithya Hariram & Thorsten Koch & Björn Mårdberg & Jan Kyncl, 2019. "A Study in Options to Improve Aerodynamic Profile of Heavy-Duty Vehicles in Europe," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    5. Janusz Piechna, 2021. "A Review of Active Aerodynamic Systems for Road Vehicles," Energies, MDPI, vol. 14(23), pages 1-31, November.
    6. Krzysztof Kurec & Konrad Kamieniecki & Janusz Piechna, 2022. "Influence of Different Plates Arrangements on the Car Body," Energies, MDPI, vol. 15(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Kurec, 2022. "Numerical Study of the Sports Car Aerodynamic Enhancements," Energies, MDPI, vol. 15(18), pages 1-19, September.
    2. Krzysztof Wiński & Adam Piechna, 2022. "Comprehensive CFD Aerodynamic Simulation of a Sport Motorcycle," Energies, MDPI, vol. 15(16), pages 1-27, August.
    3. Shladover, Steven & Barth, Matthew J & Zhang, Wei-Bin, 2011. "Engaging the International Community: Research on Intelligent Transportation Systems (ITS) Applications to Improve Environmental Performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4fn6f906, Institute of Transportation Studies, UC Berkeley.
    4. Petar Georgiev & Giovanni De Filippis & Patrick Gruber & Aldo Sorniotti, 2023. "On the Benefits of Active Aerodynamics on Energy Recuperation in Hybrid and Fully Electric Vehicles," Energies, MDPI, vol. 16(15), pages 1-27, August.
    5. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    6. Yinyin Wang & Vijayanandh Raja & Senthil Kumar Madasamy & Sujithira Padmanaban & Hussein A. Z. AL-bonsrulah & Manivel Ramaiah & Parvathy Rajendran & Arul Prakash Raji & Anselme Muzirafuti & Fuzhang Wa, 2022. "Multi-Parametric Investigations on Aerodynamic Force, Aeroacoustic, and Engine Energy Utilizations Based Development of Intercity Bus Associates with Various Drag Reduction Techniques through Advanced," Sustainability, MDPI, vol. 14(10), pages 1-51, May.
    7. Carlos Santos-Iglesia & Pablo Fernández-Arias & Álvaro Antón-Sancho & Diego Vergara, 2022. "Energy Consumption of the Urban Transport Fleet in UNESCO World Heritage Sites: A Case Study of Ávila (Spain)," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    8. Shladover, Steven E. & Nowakowski, Christopher & Lu, Xiao-Yun, 2018. "Using Cooperative Adaptive Cruise Control (CACC)to Form High-Performance Vehicle Streams. Definitions, Literature Review and Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3w6920wz, Institute of Transportation Studies, UC Berkeley.
    9. Yifeng Han & Tomoya Kawasaki & Shinya Hanaoka, 2022. "The Benefits of Truck Platooning with an Increasing Market Penetration: A Case Study in Japan," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    10. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    11. Tanvir Uddin Chowdhury & Peter Y. Park & Kevin Gingerich, 2022. "Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    12. Maciej Szudarek & Konrad Kamieniecki & Sylwester Tudruj & Janusz Piechna, 2022. "Towards Balanced Aerodynamic Axle Loading of a Car with Covered Wheels—Inflatable Splitter," Energies, MDPI, vol. 15(15), pages 1-28, July.
    13. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    14. Krzysztof Kurec & Konrad Kamieniecki & Janusz Piechna, 2022. "Influence of Different Plates Arrangements on the Car Body," Energies, MDPI, vol. 15(2), pages 1-17, January.
    15. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    16. Shladover, Steven E. & Lu, Xiao-Yun & Cody, Delphine, 2009. "Development and Evaluation of Selected Mobility Applications for VII: Concept of Operations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1011t5pk, Institute of Transportation Studies, UC Berkeley.
    17. Ghina H. Merhebi & Rouba Joumblat & Adel Elkordi, 2023. "Assessment of the Effect of Different Loading Combinations Due to Truck Platooning and Autonomous Vehicles on the Performance of Asphalt Pavement," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    18. Jianbo Feng & Yang Chen & Liyang He & Yanxue Wang, 2023. "Controller Design for Optimizing Fuel Consumption of Truck Platoon on Hilly Roads," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    19. Yang, Shiyan & Shladover, Steven E. & Lu, Xiao-Yun & Spring, John & Nelson, David & Ramezani, Hani, 2018. "A First Investigation of Truck Drivers’ On-the-Road Experience Using Cooperative Adaptive Cruise Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt92359572, Institute of Transportation Studies, UC Berkeley.
    20. Lu, Xiao-Yun & Shladover, Steven E, 2011. "Automated Truck Platoon Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7c55g2qs, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4669-:d:847980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.