IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics036054422400940x.html
   My bibliography  Save this article

Experimentally detected aerodynamic drag coefficient of the agricultural tractor form considering effects of windshield angle and hood front shape

Author

Listed:
  • Kücüksariyildiz, Hanifi
  • Canli, Eyüb
  • Carman, Kazim

Abstract

Agricultural tractors are improving their capacity, speed, and performance. However, the characteristic form of the agricultural tractors is not known in terms of aerodynamics. This is required in modeling transportational duties and their impacts on energy and environment, especially considering tractor-trailer couples. In this work, this characteristic form solely investigated apart from the couple to base a foundation. The geometry was adapted from a commercial model. The model was simplified greatly to isolate numerous parameters yielding a generic shape. Only geometrical features as parameters were selected as the nose shape as the leading surface and the windshield angle. Scaled models were tested in a wind tunnel. Drag coefficients independent from Reynolds number, drag forces, pressure distributions on the symmetry planes and pressure coefficients were obtained. An extrapolation was made in order to predict drag force related fuel consumption and CO2 emission for a full-scale tractor on-road transportation scenario based on experimentally obtained drag coefficient. It is understood that changes in tractor front surface topology and wind shield angle can lead to drag changes up to 3%. A 0.72 value of drag coefficient may be assumed for the generic agricultural tractor form. Based on this value, an on-road agricultural tractor cruising with 70 km h−1 is predicted to have a drag sourced fuel consumption of 3.9 kg h−1 and CO2 emission of 10.19 kg h−1. Tractor trailer couples and their platoons are of interest in terms of research and computational simulations that may utilize present results as validator.

Suggested Citation

  • Kücüksariyildiz, Hanifi & Canli, Eyüb & Carman, Kazim, 2024. "Experimentally detected aerodynamic drag coefficient of the agricultural tractor form considering effects of windshield angle and hood front shape," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s036054422400940x
    DOI: 10.1016/j.energy.2024.131167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400940X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s036054422400940x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.