IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026439.html
   My bibliography  Save this article

Energy-optimization design and management strategy for hybrid electric non-road mobile machinery: A case study of snowblower

Author

Listed:
  • Vu, Ngoc-Lam
  • Messier, Pascal
  • Nguyễn, Bảo-Huy
  • Vo-Duy, Thanh
  • Trovão, João Pedro F.
  • Desrochers, Alain
  • Rodrigues, António

Abstract

Reduced reliance on fossil fuels is a critical issue, and electrification of agricultural machinery is a solution for lowering greenhouse gas emissions in non-road transportation. By separating the load and drive from the engine, electrification the implement allows the engine to operate at higher efficiency. This study suggests a series hybrid design that combines a snow blower with battery support and a tractor with a reduced engine size to meet the fuel consumption reduction target while maintaining its performance. Accordingly, the Particle Swarm Optimization (PSO) algorithm is employed to size the battery that meets the constraints. Additionally, the motors of actuators are designed based on efficiency maps. Moreover, the rule-based energy management strategy is also proposed to assess the solution. This suggestion is analyzed using simulation and compared to a traditional tractor as a benchmark. The simulation results demonstrate the effectiveness of the strategy in lowering emissions from non-road machinery. Furthermore, this approach can be applied to various different types of implements attached to the tractor.

Suggested Citation

  • Vu, Ngoc-Lam & Messier, Pascal & Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Trovão, João Pedro F. & Desrochers, Alain & Rodrigues, António, 2023. "Energy-optimization design and management strategy for hybrid electric non-road mobile machinery: A case study of snowblower," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026439
    DOI: 10.1016/j.energy.2023.129249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih & Huang, Po-Chien & Tu, Jhih-Sheng, 2019. "Life cycle assessment of yard tractors using hydrogen fuel at the Port of Kaohsiung, Taiwan," Energy, Elsevier, vol. 189(C).
    2. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    3. Wen, Chang-kai & Zhang, Sheng-li & Xie, Bin & Song, Zheng-he & Li, Tong-hui & Jia, Fang & Han, Jian-gang, 2022. "Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors," Energy, Elsevier, vol. 247(C).
    4. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).
    2. Lipeng, Zhang & Xin, Liu & Shuaishuai, Liu & Haoran, Guo & Kaixin, Shi, 2024. "Low energy consumption traction control for centralized and distributed dual-mode coupling drive electric vehicle on split ramps," Energy, Elsevier, vol. 289(C).
    3. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    4. Ching-Chih Chang & Yu-Wei Chang & Po-Chien Huang, 2022. "Effects of the INDC and GGRMA Regulations on the Impact of PM 2.5 Particle Emissions on Maritime Ports: A Study of Human Health and Environmental Costs," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    5. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    6. Yao Yu & Shuaihua Hao & Songbao Guo & Zhong Tang & Shuren Chen, 2022. "Motor Torque Distribution Strategy for Different Tillage Modes of Agricultural Electric Tractors," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    7. Zhengkai Wu & Jiazhong Wang & Yazhou Xing & Shanshan Li & Jinggang Yi & Chunming Zhao, 2023. "Energy Management of Sowing Unit for Extended-Range Electric Tractor Based on Improved CD-CS Fuzzy Rules," Agriculture, MDPI, vol. 13(7), pages 1-18, June.
    8. Wang, Xudong & Wang, Qi & Wang, Wei & Cui, Yongjie & Song, Yuling, 2023. "Performance investigation of piezoelectric-mechanical electromagnetic compound vibration energy harvester for electric tractor," Energy, Elsevier, vol. 281(C).
    9. Vichos, Emmanouil & Sifakis, Nikolaos & Tsoutsos, Theocharis, 2022. "Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports," Energy, Elsevier, vol. 241(C).
    10. Zhang, Junjiang & Feng, Ganghui & Yan, Xianghai & He, Yundong & Liu, Mengnan & Xu, Liyou, 2024. "Cooperative control method considering efficiency and tracking performance for unmanned hybrid tractor based on rotary tillage prediction," Energy, Elsevier, vol. 288(C).
    11. Md. Abu Ayub Siddique & Seung-Yun Baek & Seung-Min Baek & Hyeon-Ho Jeon & Jun-Ho Lee & Mo-A Son & Su-Young Yoon & Yong-Joo Kim & Ryu-Gap Lim, 2023. "The Selection of an Energy-Saving Engine Mode Based on the Power Delivery and Fuel Consumption of a 95 kW Tractor during Rotary Tillage," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    12. Pivetta, D. & Dall’Armi, C. & Sandrin, P. & Bogar, M. & Taccani, R., 2024. "The role of hydrogen as enabler of industrial port area decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Feilong Chang & Fahui Yuan & Zhixiong Lu, 2023. "A Multi-Objective Optimization Method for a Tractor Driveline Based on the Diversity Preservation Strategy of Gradient Crowding," Agriculture, MDPI, vol. 13(7), pages 1-16, June.
    14. Li, Xian-zhe & Zhang, Ming-zhu & Yan, Xiang-hai & Liu, Meng-nan & Xu, Li-you, 2023. "Power allocation strategy for fuel cell distributed drive electric tractor based on adaptive multi-resolution analysis theory," Energy, Elsevier, vol. 284(C).
    15. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    16. Hoai-Linh T. Nguyen & Bảo-Huy Nguyễn & Thanh Vo-Duy & João Pedro F. Trovão, 2021. "A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-23, June.
    17. Wegmann, Raphael & Döge, Volker & Sauer, Dirk Uwe, 2018. "Assessing the potential of a hybrid battery system to reduce battery aging in an electric vehicle by studying the cycle life of a graphite∣NCA high energy and a LTO∣metal oxide high power battery cell," Applied Energy, Elsevier, vol. 226(C), pages 197-212.
    18. Li, Lin & Zhang, Tiezhu & Sun, Binbin & Wu, Kaiwei & Sun, Zehao & Zhang, Zhen & Lin, Lianhua & Xu, Haigang, 2023. "Research on electro-hydraulic ratios for a novel mechanical-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.