IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3224-d1683296.html
   My bibliography  Save this article

A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors

Author

Listed:
  • Yifei Yang

    (School of Mechanical and Electrical Engineering, Suzhou Vocational University, Suzhou 215104, China)

  • Yifang Wen

    (School of Mechanical and Electrical Engineering, Suzhou Vocational University, Suzhou 215104, China)

  • Xiaodong Sun

    (Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China)

  • Renzhong Wang

    (School of Mechanical and Electrical Engineering, Suzhou Vocational University, Suzhou 215104, China)

  • Ziyin Dong

    (Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China)

Abstract

Hybrid tractors, as an efficient and environmentally friendly power system, are gradually becoming an important technical choice in the agricultural field. Compared to conventional powertrain systems, hybrid electric powertrains can achieve a 15–40% reduction in fuel consumption. By optimizing the engine operating range and incorporating electric-only driving modes, these systems further contribute to a 20–35% decline in CO 2 emissions, along with a significant mitigation of nitrogen oxides (NOx) and particulate matter (PM) emissions. In this paper, the energy management technology of hybrid tractors is reviewed, with emphasis on the energy scheduling between the internal combustion engine and electric motor, the optimization control algorithm, and its practical performance in agricultural applications. Firstly, the basic configuration and working principle of hybrid tractors are introduced, and the cooperative working mode of the internal combustion engine and electric motor is expounded. Secondly, the research progress of energy management strategies is discussed. Then, the application status and challenges of hybrid power systems in agricultural machinery are discussed, and the development trend of hybrid tractors in the fields of intelligence, low carbonization, and high efficiency in the future is prospected. This paper extracts many experiences and methods from the references over the years and provides a comprehensive evaluation.

Suggested Citation

  • Yifei Yang & Yifang Wen & Xiaodong Sun & Renzhong Wang & Ziyin Dong, 2025. "A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors," Energies, MDPI, vol. 18(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3224-:d:1683296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Liu & Changgao Xia & Donglin Jiang & Gaogao Shang & Jiangyi Han & Yan Sun, 2021. "Determination and Application of Maximum Efficiency Curve of Crawler Electric Tractor Motors," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, December.
    2. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    3. Bing Zhang & Tiecheng Bai & Gang Wu & Hongwei Wang & Qingzhen Zhu & Guangqiang Zhang & Zhijun Meng & Changkai Wen, 2024. "Fatigue Analysis of Shovel Body Based on Tractor Subsoiling Operation Measured Data," Agriculture, MDPI, vol. 14(9), pages 1-25, September.
    4. Yuanyuan Gao & Yifei Yang & Shuai Fu & Kangyao Feng & Xing Han & Yongyue Hu & Qingzhen Zhu & Xinhua Wei, 2024. "Analysis of Vibration Characteristics of Tractor–Rotary Cultivator Combination Based on Time Domain and Frequency Domain," Agriculture, MDPI, vol. 14(7), pages 1-16, July.
    5. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    6. Damiani, Lorenzo & Repetto, Matteo & Prato, Alessandro Pini, 2014. "Improvement of powertrain efficiency through energy breakdown analysis," Applied Energy, Elsevier, vol. 121(C), pages 252-263.
    7. Kuizhou Ji & Yaoming Li & Zhenwei Liang & Yanbin Liu & Junhui Cheng & Hanhao Wang & Ruiheng Zhu & Shengbo Xia & Guoqiang Zheng, 2022. "Device and Method Suitable for Matching and Adjusting Reel Speed and Forward Speed of Multi-Crop Harvesting," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    8. Yao Yu & Shuaihua Hao & Songbao Guo & Zhong Tang & Shuren Chen, 2022. "Motor Torque Distribution Strategy for Different Tillage Modes of Agricultural Electric Tractors," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    9. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    10. Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
    11. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    12. En Lu & Jialin Xue & Tiaotiao Chen & Song Jiang, 2023. "Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    13. Daniele Beltrami & Paolo Iora & Laura Tribioli & Stefano Uberti, 2021. "Electrification of Compact Off-Highway Vehicles—Overview of the Current State of the Art and Trends," Energies, MDPI, vol. 14(17), pages 1-30, September.
    14. Simone Pascuzzi & Katarzyna Łyp-Wrońska & Katarzyna Gdowska & Francesco Paciolla, 2024. "Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    15. Hongtu Yang & Yan Sun & Changgao Xia & Hongdang Zhang, 2022. "Research on Energy Management Strategy of Fuel Cell Electric Tractor Based on Multi-Algorithm Fusion and Optimization," Energies, MDPI, vol. 15(17), pages 1-15, September.
    16. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    17. Yifan Zhao & Liyou Xu & Chenhui Zhao & Haigang Xu & Xianghai Yan, 2024. "Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC," Energies, MDPI, vol. 17(16), pages 1-22, August.
    18. Francesco Mocera & Valerio Martini & Aurelio Somà, 2022. "Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors," Energies, MDPI, vol. 15(5), pages 1-22, March.
    19. Rundong Zhou & Lin Wang & Xiaoting Deng & Chao Su & Song Fang & Zhixiong Lu, 2024. "Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    20. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    21. Vu, Ngoc-Lam & Messier, Pascal & Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Trovão, João Pedro F. & Desrochers, Alain & Rodrigues, António, 2023. "Energy-optimization design and management strategy for hybrid electric non-road mobile machinery: A case study of snowblower," Energy, Elsevier, vol. 284(C).
    22. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    23. Zhen Zhu & Yanpeng Yang & Dongqing Wang & Yingfeng Cai & Longhui Lai, 2022. "Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System," Agriculture, MDPI, vol. 12(3), pages 1-22, March.
    24. Hongdang Zhang & Dehua Shi & Yingfeng Cai & Weiqi Zhou & Hongtu Yang, 2020. "Research on Transmission Efficiency Oriented Predictive Control of Power Split Hybrid Electric Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, March.
    25. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoxian Zhang & Jun Li & Chuxi Li & Peihan Lin & Linlin Shi & Boyi Xiao, 2025. "Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques," Agriculture, MDPI, vol. 15(18), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    2. Hengrui Cao & Konghao Xu & Li Zhang & Zhongqiu Liu & Ziyang Wang & Haijun Fu, 2025. "Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(14), pages 1-19, July.
    3. Yiyong Jiang & Ruochen Wang & Renkai Ding & Zeyu Sun & Yu Jiang & Wei Liu, 2025. "Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas," Agriculture, MDPI, vol. 15(11), pages 1-37, May.
    4. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    5. Chaoxian Zhang & Jun Li & Chuxi Li & Peihan Lin & Linlin Shi & Boyi Xiao, 2025. "Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques," Agriculture, MDPI, vol. 15(18), pages 1-30, September.
    6. Hongguang Yang & Fujie Ding & Fengwei Gu & Feng Wu & Zhaoyang Yu & Peng Zhang & Jiangtao Wang & Zhichao Hu, 2025. "Achieving the Sustainable Agricultural Development Goals by Adopting the New Energy Electric Agricultural Machinery: An Analysis of Opportunities and Challenges of China," Energies, MDPI, vol. 18(16), pages 1-21, August.
    7. Hongxuan Wu & Xinzhong Wang & Xuegeng Chen & Yafei Zhang & Yaowen Zhang, 2025. "Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery," Agriculture, MDPI, vol. 15(12), pages 1-28, June.
    8. Ugnė Koletė Medževeprytė & Rolandas Makaras & Vaidas Lukoševičius & Sigitas Kilikevičius, 2023. "Application and Efficiency of a Series-Hybrid Drive for Agricultural Use Based on a Modified Version of the World Harmonized Transient Cycle," Energies, MDPI, vol. 16(14), pages 1-16, July.
    9. Li, Xianzhe & Liu, Mengnan & Hu, Chenming & Yan, Xianghai & Zhao, Sixia & Zhang, Mingzhu & Xu, Liyou, 2024. "Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor," Energy, Elsevier, vol. 292(C).
    10. Rundong Zhou & Lin Wang & Xiaoting Deng & Chao Su & Song Fang & Zhixiong Lu, 2024. "Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    11. Dehua Shi & Le Sun & Qirui Zhang & Shaohua Wang & Kaimei Zhang & Chunfang Yin & Chun Li, 2025. "Nonlinear Dynamics Analysis of the Wheel-Side Planetary Reducer with Tooth Wear for the In-Wheel Motored Electric Vehicle," Mathematics, MDPI, vol. 13(17), pages 1-26, September.
    12. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    13. Zixuan Xiang & Yu Miao & Yuting Zhou & Feng Li, 2025. "Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement," Energies, MDPI, vol. 18(17), pages 1-20, August.
    14. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    15. Haobin Jiang & Yang Zhao & Shidian Ma, 2025. "Dual-Layer Energy Management Strategy for a Hybrid Energy Storage System to Enhance PHEV Performance," Energies, MDPI, vol. 18(7), pages 1-20, March.
    16. Junjiang Zhang & Mingyue Shi & Mengnan Liu & Hanxiao Li & Bin Zhao & Xianghai Yan, 2024. "Dual-Source Cooperative Optimized Energy Management Strategy for Fuel Cell Tractor Considering Drive Efficiency and Power Allocation," Agriculture, MDPI, vol. 14(9), pages 1-26, August.
    17. Zhengkai Wu & Jiazhong Wang & Yazhou Xing & Shanshan Li & Jinggang Yi & Chunming Zhao, 2023. "Energy Management of Sowing Unit for Extended-Range Electric Tractor Based on Improved CD-CS Fuzzy Rules," Agriculture, MDPI, vol. 13(7), pages 1-18, June.
    18. Yayun Shen & Yue Shen & Yafei Zhang & Chenwei Huo & Zhuofan Shen & Wei Su & Hui Liu, 2025. "Research Progress on Path Planning and Tracking Control Methods for Orchard Mobile Robots in Complex Scenarios," Agriculture, MDPI, vol. 15(18), pages 1-40, September.
    19. Sun, Xiaodong & Xu, Zhaojian & Cai, Yingfeng & Chen, Long & Tian, Xiang & Jin, Zhijia & Xue, Mingzhou, 2025. "Improved energy management strategy for plug-in hybrid electric buses based on Pontryagin's minimum principle plus snack optimization," Energy, Elsevier, vol. 320(C).
    20. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3224-:d:1683296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.