IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923012813.html
   My bibliography  Save this article

Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports

Author

Listed:
  • Lombardi, Simone
  • Di Ilio, Giovanni
  • Tribioli, Laura
  • Jannelli, Elio

Abstract

As World trade is growing rapidly, the reduction of the environmental impact of in-port operations towards a low or zero-emission scenario is becoming a paramount issue. To this aim, replacing Diesel engines of cargo handling equipment used in port logistics (e.g. reach stackers, forklifts, yard tractors, etc.) with cleaner propulsion alternatives may play a major role. In this study, a robust rule-based energy management strategy is proposed for a newly developed fuel cell/battery hybrid powertrain of a yard tractor used for roll-on and roll-off in-port operations. As typical port operations are characterized by mission profiles that can vary significantly in terms of driving and duty cycles during the same work-shift, the proposed strategy, built upon the observation of the powertrain behavior under the application of an optimal controller, dynamically adapts the operation of fuel cell and battery in order to track a predefined battery state of charge trajectory, while minimizing the hydrogen consumption. The use of an optimal model-based approach as a reference for the design of an online implementable energy management strategy is indeed particularly suitable in the present case: despite their inherent high variability, the yard tractor mission profiles can be regarded as the combination of a set of predictable parameters. Results show that the application of the proposed control strategy allows the hybrid powertrain to achieve excellent performance, by leading its components to run efficiently and across suitable operative conditions. The achieved hydrogen consumption, for the considered missions, is only 2%–3% higher than that of the optimal controller, despite a quite different evolution of the battery state of charge, that is the feedback control variable. By means of this strategy, the transient loading of the fuel cell is prevented, while the battery pack ensures the fulfillment of the peak power requests, with beneficial effects in terms of on-board stored energy exploitation. The key advantage of the developed rule-based approach lies in its robustness, reliability and online applicability in real-time powertrain control.

Suggested Citation

  • Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012813
    DOI: 10.1016/j.apenergy.2023.121917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Trolio, P. & Di Giorgio, P. & Genovese, M. & Frasci, E. & Minutillo, M., 2020. "A hybrid power-unit based on a passive fuel cell/battery system for lightweight vehicles," Applied Energy, Elsevier, vol. 279(C).
    2. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    3. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    4. Barelli, Linda & Bidini, Gianni & Ottaviano, Andrea, 2012. "Optimization of a PEMFC/battery pack power system for a bus application," Applied Energy, Elsevier, vol. 97(C), pages 777-784.
    5. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    6. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    7. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    8. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xianzhe & Liu, Mengnan & Hu, Chenming & Yan, Xianghai & Zhao, Sixia & Zhang, Mingzhu & Xu, Liyou, 2024. "Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor," Energy, Elsevier, vol. 292(C).
    2. Rundong Zhou & Lin Wang & Xiaoting Deng & Chao Su & Song Fang & Zhixiong Lu, 2024. "Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle," Agriculture, MDPI, vol. 14(3), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Sanggyu & Zhao, Li & Brouwer, Jacob, 2019. "Dynamic modeling and verification of a proton exchange membrane fuel cell-battery hybrid system to power servers in data centers," Renewable Energy, Elsevier, vol. 143(C), pages 313-327.
    2. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    3. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    5. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    6. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    7. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    8. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    9. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    10. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    11. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    12. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    13. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    14. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    16. Barelli, Linda & Bidini, Gianni & Ottaviano, Andrea, 2012. "Optimization of a PEMFC/battery pack power system for a bus application," Applied Energy, Elsevier, vol. 97(C), pages 777-784.
    17. Darowicki, K. & Gawel, L. & Mielniczek, M. & Zielinski, A. & Janicka, E. & Hunger, J. & Jorissen, L., 2020. "The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream," Applied Energy, Elsevier, vol. 279(C).
    18. Bizon, Nicu, 2012. "Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 96(C), pages 431-443.
    19. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control," Applied Energy, Elsevier, vol. 88(7), pages 2559-2573, July.
    20. Daeichian, Abolghasem & Ghaderi, Razieh & Kandidayeni, Mohsen & Soleymani, Mehdi & Trovão, João P. & Boulon, Loïc, 2021. "Online characteristics estimation of a fuel cell stack through covariance intersection data fusion," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.