IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i18p1943-d1749290.html
   My bibliography  Save this article

Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques

Author

Listed:
  • Chaoxian Zhang

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Jun Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China
    Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China)

  • Chuxi Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Peihan Lin

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Linlin Shi

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China
    Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China)

  • Boyi Xiao

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China
    Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China)

Abstract

Agricultural tractors account for a substantial portion of greenhouse gas emissions in the farming sector, necessitating the development of sustainable machinery solutions. This study systematically reviews the latest advancements in electrification and smartification technologies for modern tractors, with a particular focus on algorithmic control strategies and their applications. Architecturally, the study provides a comparative analysis of four key configurations, pure electric, series hybrid, parallel hybrid, and series-parallel hybrid, detailing their respective advantages and challenges in energy efficiency and operational performance. From an algorithmic perspective, three primary methodologies—rule-based control strategies, optimization algorithms, and reinforcement learning—are examined for their applicability in energy management and control systems. The research further explores the integration of intelligent systems in unmanned farming scenarios, addressing critical challenges such as adaptive path planning in unstructured environments and multi-machine collaborative operations. A case study on battery-electric tractors demonstrates practical advancements in battery technology and energy management systems. Lifecycle cost analysis confirms the long-term economic viability of electrification, while outlining a forward-looking technological roadmap for sustainable and intelligent agricultural machinery.

Suggested Citation

  • Chaoxian Zhang & Jun Li & Chuxi Li & Peihan Lin & Linlin Shi & Boyi Xiao, 2025. "Electrification and Smartification for Modern Tractors: A Review of Algorithms and Techniques," Agriculture, MDPI, vol. 15(18), pages 1-30, September.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:18:p:1943-:d:1749290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/18/1943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/18/1943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    2. Yifei Yang & Yifang Wen & Xiaodong Sun & Renzhong Wang & Ziyin Dong, 2025. "A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors," Energies, MDPI, vol. 18(13), pages 1-23, June.
    3. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    4. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    5. Liming Sun & Mengnan Liu & Zhipeng Wang & Chuqiao Wang & Fuqiang Luo, 2023. "Research on Load Spectrum Reconstruction Method of Exhaust System Mounting Bracket of a Hybrid Tractor Based on MOPSO-Wavelet Decomposition Technique," Agriculture, MDPI, vol. 13(10), pages 1-18, September.
    6. Zhou, Quan & Li, Ji & Shuai, Bin & Williams, Huw & He, Yinglong & Li, Ziyang & Xu, Hongming & Yan, Fuwu, 2019. "Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle," Applied Energy, Elsevier, vol. 255(C).
    7. Hongtao Chen & Hui Xie & Liming Sun & Tansu Shang, 2023. "Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste," Agriculture, MDPI, vol. 13(5), pages 1-17, April.
    8. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
    9. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
    10. Simone Pascuzzi & Katarzyna Łyp-Wrońska & Katarzyna Gdowska & Francesco Paciolla, 2024. "Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    11. Claudio Rossi & Davide Pontara & Carlo Falcomer & Marco Bertoldi & Riccardo Mandrioli, 2021. "A Hybrid–Electric Driveline for Agricultural Tractors Based on an e-CVT Power-Split Transmission," Energies, MDPI, vol. 14(21), pages 1-23, October.
    12. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    13. Meng Yang & Xiaoxu Sun & Xiaoting Deng & Zhixiong Lu & Tao Wang, 2023. "Extrapolation of Tractor Traction Resistance Load Spectrum and Compilation of Loading Spectrum Based on Optimal Threshold Selection Using a Genetic Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    14. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    15. Francesco Mocera & Aurelio Somà, 2020. "Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.
    16. Baocheng Zhou & Xin Su & Hongjun Yu & Wentian Guo & Qing Zhang, 2023. "Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control," Agriculture, MDPI, vol. 13(4), pages 1-21, April.
    17. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    18. Tan Wang & Xianbao Xu & Cong Wang & Zhen Li & Daoliang Li, 2021. "From Smart Farming towards Unmanned Farms: A New Mode of Agricultural Production," Agriculture, MDPI, vol. 11(2), pages 1-26, February.
    19. Yifan Zhao & Liyou Xu & Chenhui Zhao & Haigang Xu & Xianghai Yan, 2024. "Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC," Energies, MDPI, vol. 17(16), pages 1-22, August.
    20. Wanming Pan & Junkang Li & Guotao Zhang & Le Zhou & Ming Tu, 2022. "Multi-Objective Optimization of Organic Rankine Cycle (ORC) for Tractor Waste Heat Recovery Based on Particle Swarm Optimization," Energies, MDPI, vol. 15(18), pages 1-24, September.
    21. Danijar Hafner & Jurgis Pasukonis & Jimmy Ba & Timothy Lillicrap, 2025. "Mastering diverse control tasks through world models," Nature, Nature, vol. 640(8059), pages 647-653, April.
    22. Kai Zhang & Xiaoting Deng & Zhixiong Lu & Tao Wang, 2024. "Research on the Energy Management Strategy of a Hybrid Tractor OS-ECVT Based on a Dynamic Programming Algorithm," Agriculture, MDPI, vol. 14(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    2. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    3. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    4. Liu, Zemin Eitan & Li, Yong & Zhou, Quan & Shuai, Bin & Hua, Min & Xu, Hongming & Xu, Lubing & Tan, Guikun & Li, Yanfei, 2025. "Real-time energy management for HEV combining naturalistic driving data and deep reinforcement learning with high generalization," Applied Energy, Elsevier, vol. 377(PA).
    5. Yifei Yang & Yifang Wen & Xiaodong Sun & Renzhong Wang & Ziyin Dong, 2025. "A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors," Energies, MDPI, vol. 18(13), pages 1-23, June.
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    8. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    9. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    11. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    12. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    13. Kunyu Wang & Rong Yang & Yongjian Zhou & Wei Huang & Song Zhang, 2022. "Design and Improvement of SD3-Based Energy Management Strategy for a Hybrid Electric Urban Bus," Energies, MDPI, vol. 15(16), pages 1-21, August.
    14. Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
    15. Shuai, Bin & Zhou, Quan & Li, Ji & He, Yinglong & Li, Ziyang & Williams, Huw & Xu, Hongming & Shuai, Shijin, 2020. "Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning," Applied Energy, Elsevier, vol. 267(C).
    16. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
    17. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Hongguang Yang & Fujie Ding & Fengwei Gu & Feng Wu & Zhaoyang Yu & Peng Zhang & Jiangtao Wang & Zhichao Hu, 2025. "Achieving the Sustainable Agricultural Development Goals by Adopting the New Energy Electric Agricultural Machinery: An Analysis of Opportunities and Challenges of China," Energies, MDPI, vol. 18(16), pages 1-21, August.
    19. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    20. Ugnė Koletė Medževeprytė & Rolandas Makaras & Vaidas Lukoševičius & Sigitas Kilikevičius, 2023. "Application and Efficiency of a Series-Hybrid Drive for Agricultural Use Based on a Modified Version of the World Harmonized Transient Cycle," Energies, MDPI, vol. 16(14), pages 1-16, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:18:p:1943-:d:1749290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.