IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3857-d1705717.html
   My bibliography  Save this article

Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications

Author

Listed:
  • Hengrui Cao

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Konghao Xu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Li Zhang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhongqiu Liu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Ziyang Wang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Haijun Fu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back electromotive force (EMF) content of five-phase FIFT-IPM motors, the existing model predictive current fault-tolerant control algorithms fail to effectively track fundamental and third-harmonic currents. This results in high harmonic distortion in the phase current. Hence, this paper innovatively proposes a multi-plane virtual vector model predictive fault-tolerant control strategy that can achieve rapid and effective control of both the fundamental and harmonic planes while ensuring good dynamic stability performance. Additionally, considering that electric agricultural equipment is usually in a multi-disturbance working environment, this paper introduces an adaptive gain sliding-mode disturbance observer. This observer estimates complex disturbances and feeds them back into the control system, which possesses good resistance to complex disturbances. Finally, the feasibility and effectiveness of the proposed control strategy are verified by experimental results.

Suggested Citation

  • Hengrui Cao & Konghao Xu & Li Zhang & Zhongqiu Liu & Ziyang Wang & Haijun Fu, 2025. "Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3857-:d:1705717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongyun Zhu & Bingbo Cui & Zelong Yu & Yuanyuan Gao & Xinhua Wei, 2024. "Tillage Depth Detection and Control Based on Attitude Estimation and Online Calibration of Model Parameters," Agriculture, MDPI, vol. 14(12), pages 1-19, November.
    2. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    3. Lingdi Tang & Wei Wang & Chenjun Zhang & Zanya Wang & Zeyu Ge & Shouqi Yuan, 2024. "Linear Active Disturbance Rejection Control System for the Travel Speed of an Electric Reel Sprinkling Irrigation Machine," Agriculture, MDPI, vol. 14(9), pages 1-24, September.
    4. Jinyang Li & Zhijian Shang & Runfeng Li & Bingbo Cui, 2022. "Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter," Agriculture, MDPI, vol. 12(8), pages 1-14, August.
    5. Bing Zhang & Tiecheng Bai & Gang Wu & Hongwei Wang & Qingzhen Zhu & Guangqiang Zhang & Zhijun Meng & Changkai Wen, 2024. "Fatigue Analysis of Shovel Body Based on Tractor Subsoiling Operation Measured Data," Agriculture, MDPI, vol. 14(9), pages 1-25, September.
    6. En Lu & Jialin Xue & Tiaotiao Chen & Song Jiang, 2023. "Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    7. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    8. Jinyang Li & Zhaozhao Wu & Meiqing Li & Zhijian Shang, 2024. "Dynamic Measurement Method for Steering Wheel Angle of Autonomous Agricultural Vehicles," Agriculture, MDPI, vol. 14(9), pages 1-21, September.
    9. David Marcos-Andrade & Francisco Beltran-Carbajal & Ivan Rivas-Cambero & Hugo Yañez-Badillo & Antonio Favela-Contreras & Julio C. Rosas-Caro, 2024. "Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach," Agriculture, MDPI, vol. 14(5), pages 1-25, May.
    10. Zhen Zhu & Yanpeng Yang & Dongqing Wang & Yingfeng Cai & Longhui Lai, 2022. "Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System," Agriculture, MDPI, vol. 12(3), pages 1-22, March.
    11. Yao Yu & Shuaihua Hao & Songbao Guo & Zhong Tang & Shuren Chen, 2022. "Motor Torque Distribution Strategy for Different Tillage Modes of Agricultural Electric Tractors," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    12. Dong Dai & Du Chen & Shumao Wang & Song Li & Xu Mao & Bin Zhang & Zhenyu Wang & Zheng Ma, 2023. "Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model," Agriculture, MDPI, vol. 13(1), pages 1-20, January.
    13. Jin Yuan & Wei Ji & Qingchun Feng, 2023. "Robots and Autonomous Machines for Sustainable Agriculture Production," Agriculture, MDPI, vol. 13(7), pages 1-4, July.
    14. Yan, Haofang & Acquah, Samuel Joe & Zhang, Chuan & Wang, Guoqing & Huang, Song & Zhang, Hengnian & Zhao, Baoshan & Wu, Haimei, 2019. "Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models," Agricultural Water Management, Elsevier, vol. 217(C), pages 201-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    2. Zixuan Xiang & Yu Miao & Yuting Zhou & Feng Li, 2025. "Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement," Energies, MDPI, vol. 18(17), pages 1-20, August.
    3. Hongxuan Wu & Xinzhong Wang & Xuegeng Chen & Yafei Zhang & Yaowen Zhang, 2025. "Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery," Agriculture, MDPI, vol. 15(12), pages 1-28, June.
    4. Yiyong Jiang & Ruochen Wang & Renkai Ding & Zeyu Sun & Yu Jiang & Wei Liu, 2025. "Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas," Agriculture, MDPI, vol. 15(11), pages 1-37, May.
    5. Yifei Yang & Yifang Wen & Xiaodong Sun & Renzhong Wang & Ziyin Dong, 2025. "A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors," Energies, MDPI, vol. 18(13), pages 1-23, June.
    6. Zhengrong Chen & Ruochen Wang & Renkai Ding & Bin Liu & Wei Liu & Dong Sun & Zhongyang Guo, 2025. "Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles," Energies, MDPI, vol. 18(11), pages 1-30, May.
    7. Yong Zhu & Shida Zhang & Shengnan Tang & Qiang Gao, 2025. "Research Progress and Applications of Artificial Intelligence in Agricultural Equipment," Agriculture, MDPI, vol. 15(15), pages 1-34, August.
    8. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    9. Yayun Shen & Yue Shen & Yafei Zhang & Chenwei Huo & Zhuofan Shen & Wei Su & Hui Liu, 2025. "Research Progress on Path Planning and Tracking Control Methods for Orchard Mobile Robots in Complex Scenarios," Agriculture, MDPI, vol. 15(18), pages 1-40, September.
    10. Quanjie Jiang & Yue Shen & Hui Liu & Zohaib Khan & Hao Sun & Yuxuan Huang, 2025. "A Hybrid Path Planning Algorithm for Orchard Robots Based on an Improved D* Lite Algorithm," Agriculture, MDPI, vol. 15(15), pages 1-25, August.
    11. Yu Luo & Dekui Pu & Xiaoli He & Lepeng Song & Simon X. Yang & Weihong Ma & Hanwen Shi, 2025. "Trajectory Tracking Control of an Orchard Robot Based on Improved Integral Sliding Mode Algorithm," Agriculture, MDPI, vol. 15(17), pages 1-33, September.
    12. Ganghui Feng & Junjiang Zhang & Xianghai Yan & Chunhong Dong & Mengnan Liu & Liyou Xu, 2024. "Research on energy-saving control of agricultural hybrid tractors integrating working condition prediction," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-26, March.
    13. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    14. Haobin Jiang & Yang Zhao & Shidian Ma, 2025. "Dual-Layer Energy Management Strategy for a Hybrid Energy Storage System to Enhance PHEV Performance," Energies, MDPI, vol. 18(7), pages 1-20, March.
    15. Junjiang Zhang & Mingyue Shi & Mengnan Liu & Hanxiao Li & Bin Zhao & Xianghai Yan, 2024. "Dual-Source Cooperative Optimized Energy Management Strategy for Fuel Cell Tractor Considering Drive Efficiency and Power Allocation," Agriculture, MDPI, vol. 14(9), pages 1-26, August.
    16. Liming Sun & Mengnan Liu & Zhipeng Wang & Chuqiao Wang & Fuqiang Luo, 2023. "Research on Load Spectrum Reconstruction Method of Exhaust System Mounting Bracket of a Hybrid Tractor Based on MOPSO-Wavelet Decomposition Technique," Agriculture, MDPI, vol. 13(10), pages 1-18, September.
    17. Liwei Zhu & Weiming Sun & Qian Zhang & En Lu & Jialin Xue & Guohui Sha, 2025. "Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control," Agriculture, MDPI, vol. 15(15), pages 1-16, August.
    18. Ruochen Wang & Kaiqiang Zhang & Renkai Ding & Yu Jiang & Yiyong Jiang, 2025. "A Novel Hydraulic Interconnection Design and Sliding Mode Synchronization Control of Leveling System for Crawler Work Machine," Agriculture, MDPI, vol. 15(2), pages 1-19, January.
    19. Zhengkai Wu & Jiazhong Wang & Yazhou Xing & Shanshan Li & Jinggang Yi & Chunming Zhao, 2023. "Energy Management of Sowing Unit for Extended-Range Electric Tractor Based on Improved CD-CS Fuzzy Rules," Agriculture, MDPI, vol. 13(7), pages 1-18, June.
    20. Sun, Xiaodong & Xu, Zhaojian & Cai, Yingfeng & Chen, Long & Tian, Xiang & Jin, Zhijia & Xue, Mingzhou, 2025. "Improved energy management strategy for plug-in hybrid electric buses based on Pontryagin's minimum principle plus snack optimization," Energy, Elsevier, vol. 320(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3857-:d:1705717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.