IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2702-d1662575.html
   My bibliography  Save this article

Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles

Author

Listed:
  • Zhengrong Chen

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212000, China)

  • Ruochen Wang

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212000, China)

  • Renkai Ding

    (Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212000, China)

  • Bin Liu

    (Changzhou Research and Development Center Co., Ltd., Changzhou 213000, China)

  • Wei Liu

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212000, China)

  • Dong Sun

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212000, China)

  • Zhongyang Guo

    (Jiangsu Chaoli Electric Appliance Co., Ltd., Danyang 212321, China)

Abstract

The energy crisis and environmental pollution have driven the rapid development of new energy vehicles (NEVs). As a core technology for integrating electrification and intelligence in NEVs, the brake-by-wire (BBW) system has become a research hotspot due to its excellent braking energy recovery efficiency and precise active safety control performance. This paper provides a comprehensive review of the research progress in BBW technology for NEVs and provides a forward-looking perspective on its future development. First, the types and structures of the BBW system are introduced, and the development history and representative products are systematically reviewed. Next, this paper focuses on key technologies, such as the design and modeling methods of the BBW system, braking force optimization and distribution strategies, precise actuator control, multi-system coordination, driver operation perception, intelligent decision-making, personalized control, and fault diagnosis and fault-tolerant control. Finally, the main challenges faced in the research of BBW technology for NEVs are analyzed, and future development directions are proposed, providing insights for the optimization designs and industrial application of the BBW system in the future.

Suggested Citation

  • Zhengrong Chen & Ruochen Wang & Renkai Ding & Bin Liu & Wei Liu & Dong Sun & Zhongyang Guo, 2025. "Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles," Energies, MDPI, vol. 18(11), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2702-:d:1662575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongyun Zhu & Bingbo Cui & Zelong Yu & Yuanyuan Gao & Xinhua Wei, 2024. "Tillage Depth Detection and Control Based on Attitude Estimation and Online Calibration of Model Parameters," Agriculture, MDPI, vol. 14(12), pages 1-19, November.
    2. Yang Yang & Chao Wang & Quanrang Zhang & Xiaolong He, 2017. "Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle," Energies, MDPI, vol. 10(11), pages 1-16, October.
    3. Jinyang Li & Zhijian Shang & Runfeng Li & Bingbo Cui, 2022. "Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter," Agriculture, MDPI, vol. 12(8), pages 1-14, August.
    4. Cong Geng & Dawen Ning & Linfu Guo & Qicheng Xue & Shujian Mei, 2021. "Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle," Energies, MDPI, vol. 14(8), pages 1-19, April.
    5. Huang, Shuang & Zhou, Chunjie & Yang, Lili & Qin, Yuanqing & Huang, Xiongfeng & Hu, Bowen, 2016. "Transient fault tolerant control for vehicle brake-by-wire systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 148-163.
    6. En Lu & Jialin Xue & Tiaotiao Chen & Song Jiang, 2023. "Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    7. Shuaihua Hao & Zhong Tang & Songbao Guo & Zhao Ding & Zhan Su, 2022. "Model and Method of Fault Signal Diagnosis for Blockage and Slippage of Rice Threshing Drum," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
    8. Zhang, Junjiang & Yang, Yang & Hu, Minghui & Yang, Zhong & Fu, Chunyun, 2021. "Longitudinal–vertical comprehensive control for four-wheel drive pure electric vehicle considering energy recovery and ride comfort," Energy, Elsevier, vol. 236(C).
    9. Yang Yang & Guangzheng Li & Quanrang Zhang, 2018. "A Pressure-Coordinated Control for Vehicle Electro-Hydraulic Braking Systems," Energies, MDPI, vol. 11(9), pages 1-21, September.
    10. Yaoming Li & Yanbin Liu & Kuizhou Ji & Ruiheng Zhu, 2022. "A Fault Diagnosis Method for a Differential Inverse Gearbox of a Crawler Combine Harvester Based on Order Analysis," Agriculture, MDPI, vol. 12(9), pages 1-14, August.
    11. Bingbo Cui & Xinyu Cui & Xinhua Wei & Yongyun Zhu & Zhen Ma & Yan Zhao & Yufei Liu, 2024. "Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
    12. Zheng Ma & Yongle Zhu & Shuren Chen & Souleymane Nfamoussa Traore & Yaoming Li & Lizhang Xu & Maolin Shi & Qian Zhang, 2022. "Field Investigation of the Static Friction Characteristics of High-Yielding Rice during Harvest," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    13. Xiuhua Song & Hong Li & Chao Chen & Huameng Xia & Zhiyang Zhang & Pan Tang, 2022. "Design and Experimental Testing of a Control System for a Solid-Fertilizer-Dissolving Device Based on Fuzzy PID," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    14. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    15. Chengqian Li & Jianguo Wu & Xiaoyong Pan & Hanjie Dou & Xueguan Zhao & Yuanyuan Gao & Shuo Yang & Changyuan Zhai, 2023. "Design and Experiment of a Breakpoint Continuous Spraying System for Automatic-Guidance Boom Sprayers," Agriculture, MDPI, vol. 13(12), pages 1-24, November.
    16. Ruochen Wang & Kaiqiang Zhang & Renkai Ding & Yu Jiang & Yiyong Jiang, 2025. "A Novel Hydraulic Interconnection Design and Sliding Mode Synchronization Control of Leveling System for Crawler Work Machine," Agriculture, MDPI, vol. 15(2), pages 1-19, January.
    17. Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).
    18. Jinyang Li & Zhenyu Nie & Yunfei Chen & Deqiang Ge & Meiqing Li, 2023. "Development of Boom Posture Adjustment and Control System for Wide Spray Boom," Agriculture, MDPI, vol. 13(11), pages 1-30, November.
    19. Zhang, Ruijun & Zhao, Wanzhong & Wang, Chunyan & Tai, Kang, 2024. "Research on personalized control strategy of EHB system for consistent braking feeling considering driving behaviors," Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyong Jiang & Ruochen Wang & Renkai Ding & Zeyu Sun & Yu Jiang & Wei Liu, 2025. "Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas," Agriculture, MDPI, vol. 15(11), pages 1-37, May.
    2. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    3. Wu, Jiajun & Liu, Hui & Ren, Xiaolei & Nie, Shida & Qin, Yechen & Han, Lijin, 2025. "A multi-objective optimization approach for regenerative braking control in electric vehicles using MPE-SAC algorithm," Energy, Elsevier, vol. 318(C).
    4. Liwei Zhu & Weiming Sun & Qian Zhang & En Lu & Jialin Xue & Guohui Sha, 2025. "Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control," Agriculture, MDPI, vol. 15(15), pages 1-16, August.
    5. Yayun Shen & Yue Shen & Yafei Zhang & Chenwei Huo & Zhuofan Shen & Wei Su & Hui Liu, 2025. "Research Progress on Path Planning and Tracking Control Methods for Orchard Mobile Robots in Complex Scenarios," Agriculture, MDPI, vol. 15(18), pages 1-40, September.
    6. Hongxuan Wu & Xinzhong Wang & Xuegeng Chen & Yafei Zhang & Yaowen Zhang, 2025. "Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery," Agriculture, MDPI, vol. 15(12), pages 1-28, June.
    7. Quanjie Jiang & Yue Shen & Hui Liu & Zohaib Khan & Hao Sun & Yuxuan Huang, 2025. "A Hybrid Path Planning Algorithm for Orchard Robots Based on an Improved D* Lite Algorithm," Agriculture, MDPI, vol. 15(15), pages 1-25, August.
    8. Hengrui Cao & Konghao Xu & Li Zhang & Zhongqiu Liu & Ziyang Wang & Haijun Fu, 2025. "Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(14), pages 1-19, July.
    9. Zixuan Xiang & Yu Miao & Yuting Zhou & Feng Li, 2025. "Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement," Energies, MDPI, vol. 18(17), pages 1-20, August.
    10. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    11. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    12. Zhao, Haiyan & Xie, Hongbin & Zhao, Yan & Lu, Xinghao & Gao, Bingzhao & Chen, Hong, 2025. "Adaptive brake energy recovery strategy considering traffic information," Energy, Elsevier, vol. 321(C).
    13. Yu Luo & Dekui Pu & Xiaoli He & Lepeng Song & Simon X. Yang & Weihong Ma & Hanwen Shi, 2025. "Trajectory Tracking Control of an Orchard Robot Based on Improved Integral Sliding Mode Algorithm," Agriculture, MDPI, vol. 15(17), pages 1-33, September.
    14. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    15. Renzhong Wang & Sunyang Zhang & Yifei Yang & Yifang Wen & Xiaodong Sun & Zhongzhuang Zhou & Yuting Li, 2025. "Overview of Deadbeat Predictive Control Technology for Permanent Magnet Synchronous Motor System," Energies, MDPI, vol. 18(17), pages 1-25, September.
    16. Bingbo Cui & Xinyu Cui & Xinhua Wei & Yongyun Zhu & Zhen Ma & Yan Zhao & Yufei Liu, 2024. "Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
    17. Yang Yang & Yundong He & Zhong Yang & Chunyun Fu & Zhipeng Cong, 2020. "Torque Coordination Control of an Electro-Hydraulic Composite Brake System During Mode Switching Based on Braking Intention," Energies, MDPI, vol. 13(8), pages 1-19, April.
    18. Renkai Ding & Xiangyuan Qi & Xuwen Chen & Yixin Mei & Anze Li & Ruochen Wang & Zhongyang Guo, 2025. "Research on the Design of an Omnidirectional Leveling System and Adaptive Sliding Mode Control for Tracked Agricultural Chassis in Hilly and Mountainous Terrain," Agriculture, MDPI, vol. 15(18), pages 1-28, September.
    19. Ruochen Wang & Kaiqiang Zhang & Renkai Ding & Yu Jiang & Yiyong Jiang, 2025. "A Novel Hydraulic Interconnection Design and Sliding Mode Synchronization Control of Leveling System for Crawler Work Machine," Agriculture, MDPI, vol. 15(2), pages 1-19, January.
    20. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2702-:d:1662575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.