IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024490.html
   My bibliography  Save this article

A novel regenerative braking energy recuperation system for electric vehicles based on driving style

Author

Listed:
  • Chengqun, Qiu
  • Wan, Xinshan
  • Wang, Na
  • Cao, Sunjia
  • Ji, Xinchen
  • Wu, Kun
  • Hu, Yaoyu
  • Meng, Mingyu

Abstract

The regenerative braking energy recovery system of pure electric vehicle is to recover and reuse the consumed driving energy under the premise of ensuring the braking safety. In this paper, the regenerative braking energy recovery system of pure electric vehicle was optimized based on driving style, and the driver model is constructed and the parameters that characterise driving style are determined. BLSTM (Bidirectional Long Short Term Memory) neural network model method was introduced for deep self-learning, and IDP (Iterative dynamic programming)-BLSTM based regenerative braking energy recovery management control strategy was established. Through theoretical analysis and numerical model of the system, the results of parameter representation of the energy system were preliminarily evaluated and road test was carried out. The results of real vehicle test show that IDP-BLSTM method can meet the personalized requirements of various drivers, improve driving experience and safety, and recover braking energy efficiently.

Suggested Citation

  • Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024490
    DOI: 10.1016/j.energy.2023.129055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.