IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225002282.html
   My bibliography  Save this article

A multi-objective optimization approach for regenerative braking control in electric vehicles using MPE-SAC algorithm

Author

Listed:
  • Wu, Jiajun
  • Liu, Hui
  • Ren, Xiaolei
  • Nie, Shida
  • Qin, Yechen
  • Han, Lijin

Abstract

Regenerative braking technology has been extensively promoted to increase the driving range of electric vehicles and satisfy the desire for more environmentally friendly transportation. This study focuses on independently driven front-and-rear-axle vehicles, proposing a Munchausen Prioritized Experience Soft Actor-Critic (MPE-SAC) based regenerative braking control strategy (RBCS) to optimize energy recovery during braking. The proposed RBCS ensures vehicle safety and incorporates battery life degradation as a multi-objective optimization goal, mitigating the adverse impact of high braking currents on battery longevity. The MPE-SAC-based RBCS integrates Prioritized Experience Replay (PER), Emphasizing Recent Experience (ERE), and Munchausen reinforcement learning into the SAC framework, resulting in faster convergence, improved control effectiveness, and greater adaptability. Simulation results show that the RBCS increases regenerative braking rewards by 8.57 %, 2.99 %, 1.45 %, and 0.71 % over rule-based, DDPG, TD3, and SAC methods, achieving 99.28 % of the dynamic programming (DP) algorithm's performance. Additionally, the contributions of PER, ERE, and the Munchausen reinforcement learning algorithms to the performance enhancements of the MPE-SAC-based regenerative braking control system were validated through ablation analysis, and the algorithm's real-time capability is confirmed through the hardware-in-the-loop test.

Suggested Citation

  • Wu, Jiajun & Liu, Hui & Ren, Xiaolei & Nie, Shida & Qin, Yechen & Han, Lijin, 2025. "A multi-objective optimization approach for regenerative braking control in electric vehicles using MPE-SAC algorithm," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225002282
    DOI: 10.1016/j.energy.2025.134586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    5. Zhang, Ruijun & Zhao, Wanzhong & Wang, Chunyan & Tai, Kang, 2024. "Research on personalized control strategy of EHB system for consistent braking feeling considering driving behaviors," Energy, Elsevier, vol. 293(C).
    6. Cong Geng & Dawen Ning & Linfu Guo & Qicheng Xue & Shujian Mei, 2021. "Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle," Energies, MDPI, vol. 14(8), pages 1-19, April.
    7. Hanwu Liu & Yulong Lei & Yao Fu & Xingzhong Li, 2020. "An Optimal Slip Ratio-Based Revised Regenerative Braking Control Strategy of Range-Extended Electric Vehicle," Energies, MDPI, vol. 13(6), pages 1-21, March.
    8. Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).
    9. Wang, Zhenzhen & Zhou, Jun & Rizzoni, Giorgio, 2022. "A review of architectures and control strategies of dual-motor coupling powertrain systems for battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Zhang, Junjiang & Yang, Yang & Hu, Minghui & Yang, Zhong & Fu, Chunyun, 2021. "Longitudinal–vertical comprehensive control for four-wheel drive pure electric vehicle considering energy recovery and ride comfort," Energy, Elsevier, vol. 236(C).
    11. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    12. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    13. Xiaobin Ning & Jiazheng Wang & Yuming Yin & Jiarong Shangguan & Nanxin Bao & Ning Li, 2023. "Regenerative Braking Algorithm for Parallel Hydraulic Hybrid Vehicles Based on Fuzzy Q-Learning," Energies, MDPI, vol. 16(4), pages 1-18, February.
    14. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Yu & Gexin Chen & Keyi Liu & Guishan Yan & Yaou Zhang & Yinping Liu, 2025. "Research on the Maximum Regenerative Energy Commutation Control Strategy of a Dual-Mode Synergistic Energy Recovery Pump-Controlled Grinder," Energies, MDPI, vol. 18(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    2. Zhao, Haiyan & Xie, Hongbin & Zhao, Yan & Lu, Xinghao & Gao, Bingzhao & Chen, Hong, 2025. "Adaptive brake energy recovery strategy considering traffic information," Energy, Elsevier, vol. 321(C).
    3. Zhengrong Chen & Ruochen Wang & Renkai Ding & Bin Liu & Wei Liu & Dong Sun & Zhongyang Guo, 2025. "Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles," Energies, MDPI, vol. 18(11), pages 1-30, May.
    4. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    5. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    7. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.
    8. Li, Jianqi & Yang, Hang & Cheng, Rongjun & Zheng, Pengjun & Wu, Bing, 2024. "A dynamic temporal and spatial speed control strategy for partially connected automated vehicles at a signalized arterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    9. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    10. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    11. Emilia M. Szumska, 2025. "Regenerative Braking Systems in Electric Vehicles: A Comprehensive Review of Design, Control Strategies, and Efficiency Challenges," Energies, MDPI, vol. 18(10), pages 1-22, May.
    12. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    13. Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).
    14. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Smart energy management for hybrid electric bus via improved soft actor-critic algorithm in a heuristic learning framework," Energy, Elsevier, vol. 309(C).
    15. Lipeng, Zhang & Xin, Liu & Shuaishuai, Liu & Haoran, Guo & Kaixin, Shi, 2024. "Low energy consumption traction control for centralized and distributed dual-mode coupling drive electric vehicle on split ramps," Energy, Elsevier, vol. 289(C).
    16. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    17. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    18. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    19. Jeong, Jun Woo & In Lee, Dong & Woo, Seungchul & Lim, Yunsung & Lee, Kihyung, 2024. "Analysis of energy consumption efficiency and emissions according to urban driving of hybrid electric vehicles in Korea," Applied Energy, Elsevier, vol. 371(C).
    20. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225002282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.