IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032723.html
   My bibliography  Save this article

Low energy consumption traction control for centralized and distributed dual-mode coupling drive electric vehicle on split ramps

Author

Listed:
  • Lipeng, Zhang
  • Xin, Liu
  • Shuaishuai, Liu
  • Haoran, Guo
  • Kaixin, Shi

Abstract

Distributed drive electric vehicle has good pass ability on split ramps, but it has high power demand for driving motors, resulting in low driving efficiency and limited economy. To address the aforementioned deficiencies, a centralized and distributed dual-mode coupling drive system (DMC) capable of drive force transfer between coaxial wheels is designed to avoid single-side wheel high-intensity driving and reduce vehicle energy consumption. To guarantee the longitudinal dynamics performance, a traction control based on online sliding mode extremum search (SES) was proposed, and the traction control based on the ρ_SES algorithm as a means to suppress the controller damage caused by the steady-state oscillation has also been adopted. The simulation and experiment results show that the dual-mode coupling drive electric vehicle significantly reduces the energy consumption and reduces the power demands of the drive motor than those of the distributed drive electric vehicle. Apparently, the ρ_SES algorithm based traction control suppresses the steady-state oscillations of the SES, which can protect the motor controller. This study lays the theoretical foundation for the use of DMC and achieving superior traction control for electric vehicles.

Suggested Citation

  • Lipeng, Zhang & Xin, Liu & Shuaishuai, Liu & Haoran, Guo & Kaixin, Shi, 2024. "Low energy consumption traction control for centralized and distributed dual-mode coupling drive electric vehicle on split ramps," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032723
    DOI: 10.1016/j.energy.2023.129878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.