IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221029996.html
   My bibliography  Save this article

A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors

Author

Listed:
  • Tang, Qingsong
  • Yang, Yang
  • Luo, Chang
  • Yang, Zhong
  • Fu, Chunyun

Abstract

The electro-hydraulic compound braking system of a pure electric vehicle can recover the energy released during braking and store it in the battery through the motor, thereby improving the vehicle's energy utilization efficiency. However, how to coordinate the control of motor braking and hydraulic braking during vehicle braking to ensure the optimal balance of vehicle braking safety and energy recovery efficiency is still an urgent problem to be solved in the field of new energy vehicles. This paper takes the four-wheel-drive pure electric vehicle driven by dual motors as the research object and proposes a coordinated control strategy for an electro-hydraulic hybrid brake system with efficient energy recovery. The proposed coordinated control strategy is composed of two parts: the braking force distribution control strategy that comprehensively considers braking safety and charging efficiency optimization and the coordinated control strategy of regenerative braking system (RBS) and anti-lock braking system (ABS) based on model predictive control. The results show that the proposed coordinated control strategy has superior braking performance, and improves the energy recovery efficiency by more than 22.76% compared with the conventional coordinated control strategy, proving the effectiveness of efficient energy recovery under the premise of ensuring stability and safety.

Suggested Citation

  • Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221029996
    DOI: 10.1016/j.energy.2021.122750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    4. Qiu, Chengqun & Wang, Guolin & Meng, Mingyu & Shen, Yujie, 2018. "A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations," Energy, Elsevier, vol. 149(C), pages 329-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    3. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    2. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    3. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    4. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    5. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    6. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    7. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    8. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    9. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Lu, Qiang & Zhang, Bo & Yang, Shichun & Peng, Zhaoxia, 2022. "Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China," Energy, Elsevier, vol. 257(C).
    11. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    12. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    13. Yang Yang & Qiang He & Yongzheng Chen & Chunyun Fu, 2020. "Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor," Energies, MDPI, vol. 13(3), pages 1-21, February.
    14. George Barjoveanu & Florenta Dinita & Carmen Teodosiu, 2022. "Aging Passenger Car Fleet Structure, Dynamics, and Environmental Performance Evaluation at the Regional Level by Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    15. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    16. Yu Yang & Chao Wang & Shujun Yang & Xianzhi Tang, 2022. "Study on Top Hierarchy Control Strategy of AEBS over Regenerative Brake and Hydraulic Brake for Hub Motor Drive BEVs," Energies, MDPI, vol. 15(22), pages 1-17, November.
    17. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    18. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    19. Zhichao Zhao & Lu Li & Yang Ou & Yi Wang & Shaoyang Wang & Jing Yu & Renhua Feng, 2023. "A Comparative Study on the Energy Flow of Electric Vehicle Batteries among Different Environmental Temperatures," Energies, MDPI, vol. 16(14), pages 1-15, July.
    20. Li, Yangyang & Deng, Xintao & Zhang, Tao & Liu, Shenghui & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao & Shen, Xiaojun, 2023. "Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221029996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.