IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp329-340.html
   My bibliography  Save this article

A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations

Author

Listed:
  • Qiu, Chengqun
  • Wang, Guolin
  • Meng, Mingyu
  • Shen, Yujie

Abstract

This paper mainly focuses on control strategy of the regenerative braking system of an electric vehicle under safety critical driving situations. With the aims of guaranteeing the electric vehicle stability in various types of tire-road adhesion conditions, based on the characteristics of an electrified powertrain, a novel control strategy of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. Firstly, the main construction of the case-study electric car with regenerative braking system is introduced. Next, based on the phase plane theory, the optimal brake torque is calculated for ABS control of an electric vehicle. Then, an allocation control, wherein the required optimal brake torque is divided into two parts that are disposed respectively by the friction and regenerative brakes, is discussed. In addition, two parameters for evaluating regeneration braking energy efficiency contribution while in the deceleration braking process are defined. Furthermore, a novel regenerative braking control strategy named “serial control strategy” is proposed. Finally, the road tests are implemented in four types of tire-road adhesion conditions under safety-critical driving situations. The test results validate the effectiveness and feasibility of the proposed control strategy.

Suggested Citation

  • Qiu, Chengqun & Wang, Guolin & Meng, Mingyu & Shen, Yujie, 2018. "A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations," Energy, Elsevier, vol. 149(C), pages 329-340.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:329-340
    DOI: 10.1016/j.energy.2018.02.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218302743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoehne, Christopher G. & Chester, Mikhail V., 2016. "Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions," Energy, Elsevier, vol. 115(P1), pages 646-657.
    2. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    3. Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
    4. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    5. Shokrzadeh, Shahab & Ribberink, Hajo & Rishmawi, Issa & Entchev, Evgueniy, 2017. "A simplified control algorithm for utilities to utilize plug-in electric vehicles to reduce distribution transformer overloading," Energy, Elsevier, vol. 133(C), pages 1121-1131.
    6. Onat, Nuri C. & Noori, Mehdi & Kucukvar, Murat & Zhao, Yang & Tatari, Omer & Chester, Mikhail, 2017. "Exploring the suitability of electric vehicles in the United States," Energy, Elsevier, vol. 121(C), pages 631-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Yundong He & Zhong Yang & Chunyun Fu & Zhipeng Cong, 2020. "Torque Coordination Control of an Electro-Hydraulic Composite Brake System During Mode Switching Based on Braking Intention," Energies, MDPI, vol. 13(8), pages 1-19, April.
    2. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    3. Yang Yang & Qiang He & Yongzheng Chen & Chunyun Fu, 2020. "Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor," Energies, MDPI, vol. 13(3), pages 1-21, February.
    4. Qi, Lingfei & Wu, Xiaoping & Zeng, Xiaohui & Feng, Yan & Pan, Hongye & Zhang, Zutao & Yuan, Yanping, 2020. "An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles," Energy, Elsevier, vol. 200(C).
    5. Zewen Meng & Tiezhu Zhang & Hongxin Zhang & Qinghai Zhao & Jian Yang, 2021. "Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold," Energies, MDPI, vol. 14(17), pages 1-12, August.
    6. Cong Geng & Dawen Ning & Linfu Guo & Qicheng Xue & Shujian Mei, 2021. "Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle," Energies, MDPI, vol. 14(8), pages 1-19, April.
    7. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    8. Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
    9. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    10. Hanwu Liu & Yulong Lei & Yao Fu & Xingzhong Li, 2020. "An Optimal Slip Ratio-Based Revised Regenerative Braking Control Strategy of Range-Extended Electric Vehicle," Energies, MDPI, vol. 13(6), pages 1-21, March.
    11. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).
    12. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    13. Li, Shiying & Xu, Jun & Pu, Xiaohui & Tao, Tao & Gao, Haonan & Mei, Xuesong, 2019. "Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper," Energy, Elsevier, vol. 189(C).
    14. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Gao, Zhiming & LaClair, Tim & Ou, Shiqi & Huff, Shean & Wu, Guoyuan & Hao, Peng & Boriboonsomsin, Kanok & Barth, Matthew, 2019. "Evaluation of electric vehicle component performance over eco-driving cycles," Energy, Elsevier, vol. 172(C), pages 823-839.
    4. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    5. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    6. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    7. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    8. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    9. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    10. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    11. Ru-Jen Lin & Rong-Huei Chen & Thao-Minh Ho, 2013. "Market Demand, Green Innovation, and Firm Performance: Evidence from Hybrid Vehicle Industry," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    12. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    13. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    14. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    15. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    16. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    17. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    18. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    19. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    20. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.