IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp1121-1131.html
   My bibliography  Save this article

A simplified control algorithm for utilities to utilize plug-in electric vehicles to reduce distribution transformer overloading

Author

Listed:
  • Shokrzadeh, Shahab
  • Ribberink, Hajo
  • Rishmawi, Issa
  • Entchev, Evgueniy

Abstract

The introduction of electric vehicles on the power grid translates to operational challenges and opportunities of using these vehicles as distributed energy resources. This paper presents an algorithm for utilities to identify optimal scenarios for controlling electric load of plug-in electric vehicles on a neighborhood transformer, and their potential contribution to reducing overloading through controlled charging and feeding power back to the grid. A dataset of real-world driving data of 2800 vehicles in Canada is used to emulate realistic driving patterns for the simulations. The electric load of vehicles charging is estimated for different charging scenarios, battery capacities, and numbers of electric vehicle. Operational energy consumption data of single-family homes are used to predict realistic power profiles of a residential neighborhood. Different scenarios of controlling the electric load on a pole transformer are investigated for two seasons to account for ambient temperatures. By simulating the charging impacts of electric vehicles on a neighborhood transformer, the research presents a simplified control algorithm of optimal strategies to control and reduce transformer overloading. Results show that vehicle-to-grid is an effective measure to reduce peak loads, while climate condition, vehicle penetration rate, and driving profile are the key factors to the control strategies.

Suggested Citation

  • Shokrzadeh, Shahab & Ribberink, Hajo & Rishmawi, Issa & Entchev, Evgueniy, 2017. "A simplified control algorithm for utilities to utilize plug-in electric vehicles to reduce distribution transformer overloading," Energy, Elsevier, vol. 133(C), pages 1121-1131.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1121-1131
    DOI: 10.1016/j.energy.2017.04.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    2. Charilaos Latinopoulos & Aruna Sivakumar & John W. Polak, 2021. "Optimal Pricing of Vehicle-to-Grid Services Using Disaggregate Demand Models," Energies, MDPI, vol. 14(4), pages 1-27, February.
    3. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    4. Li, Yipu & Su, Hao & Zhou, Yun & Chen, Lixia & Shi, Yiwei & Li, Hengjie & Feng, Donghan, 2023. "Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load," Energy, Elsevier, vol. 268(C).
    5. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    6. Qiu, Chengqun & Wang, Guolin & Meng, Mingyu & Shen, Yujie, 2018. "A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations," Energy, Elsevier, vol. 149(C), pages 329-340.
    7. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    8. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    9. Shin-Ki Hong & Sung Gu Lee & Myungchin Kim, 2020. "Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex," Energies, MDPI, vol. 13(10), pages 1-23, May.
    10. Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
    11. Tohid Harighi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Eklas Hossain & Jens Bo Holm-Nielsen, 2019. "Electric Vehicle Charge Stations Location Analysis and Determination—Ankara (Turkey) Case Study," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1121-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.