IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p729-d1028766.html
   My bibliography  Save this article

Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption

Author

Listed:
  • Nikita V. Martyushev

    (Department of Advanced Technologies, Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk, Russia)

  • Boris V. Malozyomov

    (Department of Electrotechnical Complexes, Novosibirsk State Technical University, 20, Karl Marks Ave., 630073 Novosibirsk, Russia)

  • Ilham H. Khalikov

    (Department of Electrotechnical Complexes, Novosibirsk State Technical University, 20, Karl Marks Ave., 630073 Novosibirsk, Russia)

  • Viktor Alekseevich Kukartsev

    (Department of Materials Science and Materials Processing Technology, Polytechnical Institute, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Vladislav Viktorovich Kukartsev

    (Department of Informatics, Institute of Space and Information Technologies, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Department of Information Economic Systems, Institute of Engineering and Economics, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
    Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia)

  • Vadim Sergeevich Tynchenko

    (Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia
    Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)

  • Yadviga Aleksandrovna Tynchenko

    (Laboratory of Biofuel Compositions, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Department of Systems Analysis and Operations Research, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)

  • Mengxu Qi

    (Department of Advanced Technologies, Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk, Russia)

Abstract

The article reviews the existing methods of increasing the energy efficiency of electric transport by analyzing and studying the methods of increasing the energy storage resource. It is grouped according to methods, approaches, and solutions. The most effective methods and ways of their implementation are identified. General methods of increasing energy efficiency, methods of increasing recuperation during braking, methods of energy-efficient energy consumption, the use of energy-saving technologies, and improving the energy efficiency of the traction drive are considered. The purpose of this work is to identify the main operating factors on the basis of a critical review of existing methods for assessing the technical condition of batteries and experimental results on the degradation of lithium-ion batteries. Using the great experience of the research group in the field of modeling, diagnostics, and forecasting of life of electric cars, as well as their intellectual management, the new theoretical and practical methods of integrated assessment of the parameters of the traction battery and state of charge, which are operated in the heavy forced regenerative regimes of electric traction, are created and proposed. A great role is played by the construction of the transport model. The development is based on physical laws that passengers and vehicle owners are unaware of. For each model there is a different area of application, and what is suitable for one object may not be suitable for another. The overview shows that there is no one-size-fits-all way to improve energy efficiency. It is necessary to make a choice among several proposed models after a thorough feasibility study.

Suggested Citation

  • Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:729-:d:1028766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    3. Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
    4. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    5. Jianwei Gao & Yu Yang & Fangjie Gao & Pengcheng Liang, 2021. "Optimization of Electric Vehicles Based on Frank-Copula- GlueCVaR Combined Wind and Photovoltaic Output Scheduling Research," Energies, MDPI, vol. 14(19), pages 1-15, September.
    6. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    7. Hensher, David A. & Wei, Edward & Liu, Wen, 2021. "Battery electric vehicles in cities: Measurement of some impacts on traffic and government revenue recovery," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Alessandro Ferrara & Saeid Zendegan & Hans-Michael Koegeler & Sajin Gopi & Martin Huber & Johannes Pell & Christoph Hametner, 2022. "Optimal Calibration of an Adaptive and Predictive Energy Management Strategy for Fuel Cell Electric Trucks," Energies, MDPI, vol. 15(7), pages 1-20, March.
    9. Ying Yang & Zhenpo Wang & Shuo Wang & Ni Lin, 2022. "An Investigation of Opportunity Charging with Hybrid Energy Storage System on Electric Bus with Two-Speed Transmission," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    10. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    11. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    12. Guanghai Zhu & Jianbin Lin & Qingwu Liu & Hongwen He, 2019. "Research on the Energy-Saving Strategy of Path Planning for Electric Vehicles Considering Traffic Information," Energies, MDPI, vol. 12(19), pages 1-14, September.
    13. Yuche Chen & Ruixiao Sun & Xuanke Wu, 2021. "Estimating Bounds of Aerodynamic, Mass, and Auxiliary Load Impacts on Autonomous Vehicles: A Powertrain Simulation Approach," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    14. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).
    15. Giulia Sandrini & Daniel Chindamo & Marco Gadola, 2022. "Regenerative Braking Logic That Maximizes Energy Recovery Ensuring the Vehicle Stability," Energies, MDPI, vol. 15(16), pages 1-43, August.
    16. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    17. Xiaojin Men & Youguang Guo & Gang Wu & Shuangwu Chen & Chun Shi, 2022. "Implementation of an Improved Motor Control for Electric Vehicles," Energies, MDPI, vol. 15(13), pages 1-24, July.
    18. Hesham Ebrahim & Robert Dominy, 2021. "The Effect of Afterbody Geometry on Passenger Vehicles in Platoon," Energies, MDPI, vol. 14(22), pages 1-12, November.
    19. Nickolay I. Shchurov & Sergey V. Myatezh & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergei I. Dedov, 2021. "Determination of Inactive Powers in a Single-Phase AC Network," Energies, MDPI, vol. 14(16), pages 1-13, August.
    20. Binbin Sun & Tianqi Gu & Mengxue Xie & Pengwei Wang & Song Gao & Xi Zhang, 2022. "Strategy Design and Performance Analysis of an Electromechanical Flywheel Hybrid Scheme for Electric Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    21. Muhammad Rizalul Wahid & Bentang Arief Budiman & Endra Joelianto & Muhammad Aziz, 2021. "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, MDPI, vol. 14(20), pages 1-24, October.
    22. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    23. Giyeon Hwang & Kyungmin Lee & Jongmyung Kim & Kyu-Jin Lee & Sangyul Lee & Minjae Kim, 2020. "Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    24. Emiliano Pipitone & Salvatore Caltabellotta, 2021. "Efficiency Advantages of the Separated Electric Compound Propulsion System for CNG Hybrid Vehicles," Energies, MDPI, vol. 14(24), pages 1-31, December.
    25. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
    26. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    27. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
    28. Roxanne Neufville & Hassan Abdalla & Ali Abbas, 2022. "Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions," Sustainability, MDPI, vol. 14(11), pages 1-29, June.
    29. Roberta Olindo & Nathalie Schmitt & Joost Vogtländer, 2021. "Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    30. Fabrizio Donatantonio & Alessandro Ferrara & Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2022. "Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions," Energies, MDPI, vol. 15(6), pages 1-22, March.
    31. Madina E. Isametova & Rollan Nussipali & Nikita V. Martyushev & Boris V. Malozyomov & Egor A. Efremenkov & Aysen Isametov, 2022. "Mathematical Modeling of the Reliability of Polymer Composite Materials," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    2. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    4. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter," Mathematics, MDPI, vol. 11(10), pages 1-11, May.
    5. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    6. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    7. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Igor Gritsuk & Valerii Verbovskyi, 2023. "Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants," Energies, MDPI, vol. 16(17), pages 1-25, August.
    8. Sizu Hou & Yisu Hou & Baikui Li & Ziqi Wang, 2023. "Fault Recovery Strategy for Power–Communication Coupled Distribution Network Considering Uncertainty," Energies, MDPI, vol. 16(12), pages 1-21, June.
    9. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    10. Boris V. Malozyomov & Nikita V. Martyushev & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Sergei Vasilievich Tynchenko & Roman V. Klyuev & Nikolay A. Zagorodnii & Yadviga Aleksandr, 2023. "Study of Supercapacitors Built in the Start-Up System of the Main Diesel Locomotive," Energies, MDPI, vol. 16(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris V. Malozyomov & Nikita V. Martyushev & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Sergei Vasilievich Tynchenko & Roman V. Klyuev & Nikolay A. Zagorodnii & Yadviga Aleksandr, 2023. "Study of Supercapacitors Built in the Start-Up System of the Main Diesel Locomotive," Energies, MDPI, vol. 16(9), pages 1-24, May.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    3. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    4. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    5. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    6. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    7. Boris V. Malozyomov & Vladimir Ivanovich Golik & Vladimir Brigida & Vladislav V. Kukartsev & Yadviga A. Tynchenko & Andrey A. Boyko & Sergey V. Tynchenko, 2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    8. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    9. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    10. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    11. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    12. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    13. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    14. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    15. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    16. Jacek Caban & Arkadiusz Małek & Branislav Šarkan, 2024. "Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources," Energies, MDPI, vol. 17(5), pages 1-17, March.
    17. Imed Khabbouchi & Dhaou Said & Aziz Oukaira & Idir Mellal & Lyes Khoukhi, 2023. "Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)," Energies, MDPI, vol. 16(5), pages 1-15, February.
    18. Khaled Itani & Alexandre De Bernardinis, 2023. "Review on New-Generation Batteries Technologies: Trends and Future Directions," Energies, MDPI, vol. 16(22), pages 1-29, November.
    19. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    20. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:729-:d:1028766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.