IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2586-d1164352.html
   My bibliography  Save this article

Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles

Author

Listed:
  • Nikita V. Martyushev

    (Department of Materials Science, Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Boris V. Malozyomov

    (Department of Electrotechnical Complexes, Novosibirsk State Technical University, 20, Karla Marksa Ave., 630073 Novosibirsk, Russia)

  • Svetlana N. Sorokova

    (Department of Mechanical Engineering, Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk, Russia)

  • Egor A. Efremenkov

    (Department of Mechanical Engineering, Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk, Russia)

  • Mengxu Qi

    (Department of Mechanical Engineering, Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk, Russia)

Abstract

Currently, the estimated range of an electric vehicle is a variable value. The assessment of this power reserve is possible by various methods, and the results of the assessment by these methods will be quite different. Thus, building a model based on these cycles is an extremely important task for manufacturers of electric vehicles. In this paper, a simulation model was developed to determine the range of an electric vehicle by cycles of movement. A mathematical model was created to study the power reserve of an electric vehicle, taking into account four driving cycles, in which the lengths of cycles and the forces acting on the electric vehicle are determined; the calculation of the forces of resistance to movement was carried out taking into account the efficiency of the electric motor; thus, the energy consumption of an electric vehicle is determined. The modeling of the study of motion cycles on the presented model was carried out. The mathematical evaluation of battery life was based on simulation results. Simulation modeling of an electric vehicle in the MATLAB Simulink software environment was performed. An assessment of the power reserve of the developed electric vehicle was completed. The power reserve was estimated using the four most common driving cycles—NEDC, WLTC, JC08, US06. Studies have shown that the highest speed of the presented US06 cycle provides the shortest range of an electric vehicle. The JC08 and NEDC cycles have similar developed speeds in urban conditions, while in NEDC there is a phase of out-of-town traffic; therefore, due to the higher speed, the electric vehicle covers a greater distance in equal time compared to JC08. At the same time, the NEDC cycle is the least dynamic and the acceleration values do not exceed 1 m/s 2 . Low dynamics allow for a longer range of an electric vehicle; however, the actual urban operation of an electric vehicle requires more dynamics. The cycles of movement presented in the article provide a sufficient variety and variability of the load of an electric vehicle and its battery over a wide range, which made it possible to conduct effective studies of the energy consumed, taking into account the recovery of electricity to the battery in a wide range of loads. It was determined that frequent braking, taking into account operation including in urban traffic, provides a significant return of electricity to the battery.

Suggested Citation

  • Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2586-:d:1164352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    2. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    3. Zhiwei He & Mingyu Gao & Caisheng Wang & Leyi Wang & Yuanyuan Liu, 2013. "Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model," Energies, MDPI, vol. 6(8), pages 1-18, August.
    4. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    5. Xue Li & Jiuchun Jiang & Caiping Zhang & Le Yi Wang & Linfeng Zheng, 2015. "Robustness of SOC Estimation Algorithms for EV Lithium-Ion Batteries against Modeling Errors and Measurement Noise," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, October.
    6. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    7. Narayan, Nishant & Papakosta, Thekla & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2018. "Estimating battery lifetimes in Solar Home System design using a practical modelling methodology," Applied Energy, Elsevier, vol. 228(C), pages 1629-1639.
    8. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    9. Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    10. Nickolay I. Shchurov & Sergey V. Myatezh & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergei I. Dedov, 2021. "Determination of Inactive Powers in a Single-Phase AC Network," Energies, MDPI, vol. 14(16), pages 1-13, August.
    11. Allafi, Walid & Uddin, Kotub & Zhang, Cheng & Mazuir Raja Ahsan Sha, Raja & Marco, James, 2017. "On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model," Applied Energy, Elsevier, vol. 204(C), pages 497-508.
    12. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    13. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    14. Madina E. Isametova & Rollan Nussipali & Nikita V. Martyushev & Boris V. Malozyomov & Egor A. Efremenkov & Aysen Isametov, 2022. "Mathematical Modeling of the Reliability of Polymer Composite Materials," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    2. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    3. Yaoyidi Wang & Niansheng Chen & Guangyu Fan & Dingyu Yang & Lei Rao & Songlin Cheng & Xiaoyong Song, 2023. "DLPformer: A Hybrid Mathematical Model for State of Charge Prediction in Electric Vehicles Using Machine Learning Approaches," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    4. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    5. Khalid Khan & Inna Samuilik & Amir Ali, 2024. "A Mathematical Model for Dynamic Electric Vehicles: Analysis and Optimization," Mathematics, MDPI, vol. 12(2), pages 1-19, January.
    6. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    7. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks," Mathematics, MDPI, vol. 12(3), pages 1-17, February.
    8. Tingting Li & Shejun Deng & Caoye Lu & Yong Wang & Huajun Liao, 2023. "Optimization of Green Vehicle Paths Considering the Impact of Carbon Emissions: A Case Study of Municipal Solid Waste Collection and Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    9. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Modelling of Traction Equipment Parameters of Electric Cargo Trucks," Mathematics, MDPI, vol. 12(4), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    3. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    4. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    5. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    6. Boris V. Malozyomov & Nikita V. Martyushev & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Sergei Vasilievich Tynchenko & Roman V. Klyuev & Nikolay A. Zagorodnii & Yadviga Aleksandr, 2023. "Study of Supercapacitors Built in the Start-Up System of the Main Diesel Locomotive," Energies, MDPI, vol. 16(9), pages 1-24, May.
    7. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Sizu Hou & Yisu Hou & Baikui Li & Ziqi Wang, 2023. "Fault Recovery Strategy for Power–Communication Coupled Distribution Network Considering Uncertainty," Energies, MDPI, vol. 16(12), pages 1-21, June.
    9. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    10. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    11. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter," Mathematics, MDPI, vol. 11(10), pages 1-11, May.
    12. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    13. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    14. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    15. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    16. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    17. Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.
    18. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    19. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    20. Shichun Yang & Cheng Deng & Yulong Zhang & Yongling He, 2017. "State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2586-:d:1164352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.