IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5217-5233d50604.html
   My bibliography  Save this article

Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

Author

Listed:
  • Saeed Sepasi

    (Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East-West Road, Post 105, Honolulu, HI 96822, USA)

  • Leon R. Roose

    (Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East-West Road, Post 105, Honolulu, HI 96822, USA
    These authors contributed equally to this work.)

  • Marc M. Matsuura

    (Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East-West Road, Post 105, Honolulu, HI 96822, USA
    These authors contributed equally to this work.)

Abstract

As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. In these applications, the battery management system (BMS) requires an accurate online estimation of the state of charge (SOC) in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes SOC estimation of Li-ion battery packs using a fuzzy-improved extended Kalman filter (fuzzy-IEKF) for Li-ion cells, regardless of their age. The proposed approach introduces a fuzzy method with a new class and associated membership function that determines an approximate initial value applied to SOC estimation. Subsequently, the EKF method is used by considering the single unit model for the battery pack to estimate the SOC for following periods of battery use. This approach uses an adaptive model algorithm to update the model for each single cell in the battery pack. To verify the accuracy of the estimation method, tests are done on a LiFePO 4 aged battery pack consisting of 120 cells connected in series with a nominal voltage of 432 V.

Suggested Citation

  • Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5217-5233:d:50604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhong, Liang & Zhang, Chenbin & He, Yao & Chen, Zonghai, 2014. "A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis," Applied Energy, Elsevier, vol. 113(C), pages 558-564.
    2. Zhongyue Zou & Jun Xu & Chris Mi & Binggang Cao & Zheng Chen, 2014. "Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries," Energies, MDPI, vol. 7(8), pages 1-18, August.
    3. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    4. Nima Lotfi & Poria Fajri & Samuel Novosad & Jack Savage & Robert G. Landers & Mehdi Ferdowsi, 2013. "Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems," Energies, MDPI, vol. 6(10), pages 1-28, October.
    5. Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
    6. Xuebing Han & Minggao Ouyang & Languang Lu & Jianqiu Li, 2014. "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    7. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    8. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    3. Reihani, Ehsan & Sepasi, Saeed & Ghorbani, Reza, 2016. "Scheduling of price-sensitive residential storage devices and loads with thermal inertia in distribution grid," Applied Energy, Elsevier, vol. 183(C), pages 636-644.
    4. Xiaopeng Tang & Boyang Liu & Furong Gao & Zhou Lv, 2016. "State-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer," Energies, MDPI, vol. 9(9), pages 1-12, August.
    5. Lan-Rong Dung & Hsiang-Fu Yuan & Jieh-Hwang Yen & Chien-Hua She & Ming-Han Lee, 2016. "A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions," Energies, MDPI, vol. 9(1), pages 1-21, January.
    6. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    7. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    8. Yunfeng Jiang & Xin Zhao & Amir Valibeygi & Raymond A. De Callafon, 2016. "Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery," Energies, MDPI, vol. 9(8), pages 1-17, July.
    9. Shichun Yang & Cheng Deng & Yulong Zhang & Yongling He, 2017. "State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model," Energies, MDPI, vol. 10(10), pages 1-14, October.
    10. Renxin Xiao & Jiangwei Shen & Xiaoyu Li & Wensheng Yan & Erdong Pan & Zheng Chen, 2016. "Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods," Energies, MDPI, vol. 9(3), pages 1-15, March.
    11. Bizhong Xia & Haiqing Wang & Mingwang Wang & Wei Sun & Zhihui Xu & Yongzhi Lai, 2015. "A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter," Energies, MDPI, vol. 8(12), pages 1-15, November.
    12. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    13. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.
    14. Gelareh Javid & Djaffar Ould Abdeslam & Michel Basset, 2021. "Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks," Energies, MDPI, vol. 14(3), pages 1-14, February.
    15. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    16. Fang Zhou & Feng Xiao & Cheng Chang & Yulong Shao & Chuanxue Song, 2017. "Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-21, July.
    17. Dian Wang & Yun Bao & Jianjun Shi, 2017. "Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-11, August.
    18. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    19. Zengkai Wang & Shengkui Zeng & Jianbin Guo & Taichun Qin, 2018. "Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-22, July.
    20. S. M. Mezbahul Amin & Nazia Hossain & Molla Shahadat Hossain Lipu & Shabana Urooj & Asma Akter, 2023. "Development of a PV/Battery Micro-Grid for a Data Center in Bangladesh: Resilience and Sustainability Analysis," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    21. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    22. Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.
    23. Bizhong Xia & Guanghao Chen & Jie Zhou & Yadi Yang & Rui Huang & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "Online Parameter Identification and Joint Estimation of the State of Charge and the State of Health of Lithium-Ion Batteries Considering the Degree of Polarization," Energies, MDPI, vol. 12(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    2. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    3. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    4. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    5. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    6. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    7. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    8. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    9. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    10. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    11. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
    12. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    13. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    14. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    15. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    16. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    17. Haobin Jiang & Xijia Chen & Yifu Liu & Qian Zhao & Huanhuan Li & Biao Chen, 2021. "Online State-of-Charge Estimation Based on the Gas–Liquid Dynamics Model for Li(NiMnCo)O 2 Battery," Energies, MDPI, vol. 14(2), pages 1-19, January.
    18. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    19. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    20. Susanne Rothgang & Matthias Rogge & Jan Becker & Dirk Uwe Sauer, 2015. "Battery Design for Successful Electrification in Public Transport," Energies, MDPI, vol. 8(7), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5217-5233:d:50604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.