IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p854-d494747.html
   My bibliography  Save this article

Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions

Author

Listed:
  • Seyed Mahdi Miraftabzadeh

    (Department of Energy, Politecnico di Milano, Via La Masa, 34, 20156 Milan, Italy)

  • Michela Longo

    (Department of Energy, Politecnico di Milano, Via La Masa, 34, 20156 Milan, Italy)

  • Federica Foiadelli

    (Department of Energy, Politecnico di Milano, Via La Masa, 34, 20156 Milan, Italy)

Abstract

The ubiquitous influence of E-mobility, especially electrical vehicles (EVs), in recent years has been considered in the electrical power system in which CO 2 reduction is the primary concern. Having an accurate and timely estimation of the total energy demand of EVs defines the interaction between customers and the electrical power grid, considering the traffic flow, power demand, and available charging infrastructures around a city. The existing EV energy prediction methods mainly focus on a single electric vehicle energy demand; to the best of our knowledge, none of them address the total energy that all EVs consume in a city. This situation motivated us to develop a novel estimation model in the big data regime to calculate EVs’ total energy consumption for any desired time interval. The main contribution of this article is to learn the generic demand patterns in order to adjust the schedules of power generation and prevent any electrical disturbances. The proposed model successfully handled 100 million records of real-world taxi routes and weather condition datasets, demonstrating that energy consumptions are highly correlated to the weekdays’ traffic flow. Moreover, the pattern identifies Thursdays and Fridays as the days of peak energy usage, while weekend days and holidays present the lowest range.

Suggested Citation

  • Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:854-:d:494747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    2. Semen Uimonen & Matti Lehtonen, 2020. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data," Energies, MDPI, vol. 13(21), pages 1-16, October.
    3. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    4. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    7. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    8. Pantoš, Miloš, 2011. "Stochastic optimal charging of electric-drive vehicles with renewable energy," Energy, Elsevier, vol. 36(11), pages 6567-6576.
    9. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Li & Tengyuan Wang & Jiaxu Li & Yong Tian & Jindong Tian, 2022. "Energy Consumption Estimation for Electric Buses Based on a Physical and Data-Driven Fusion Model," Energies, MDPI, vol. 15(11), pages 1-17, June.
    2. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Gianfranco Di Lorenzo & Erika Stracqualursi & Rodolfo Araneo, 2022. "The Journey Towards the Energy Transition: Perspectives from the International Conference on Environment and Electrical Engineering (EEEIC)," Energies, MDPI, vol. 15(18), pages 1-5, September.
    4. Manfred Dollinger & Gerhard Fischerauer, 2021. "Model-Based Range Prediction for Electric Cars and Trucks under Real-World Conditions," Energies, MDPI, vol. 14(18), pages 1-27, September.
    5. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    6. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    7. Quynh T. Tran & Leon Roose & Chayaphol Vichitpunt & Kumpanat Thongmai & Krittanat Noisopa, 2022. "A Comprehensive Model to Estimate Electric Vehicle Battery’s State of Charge for a Pre-Scheduled Trip Based on Energy Consumption Estimation," Clean Technol., MDPI, vol. 5(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    2. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    3. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    4. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    5. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    6. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    7. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    8. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    9. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    10. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    12. Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
    13. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    14. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    15. Manbachi, M. & Sadu, A. & Farhangi, H. & Monti, A. & Palizban, A. & Ponci, F. & Arzanpour, S., 2016. "Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform," Applied Energy, Elsevier, vol. 169(C), pages 28-39.
    16. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    17. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    18. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    19. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    20. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:854-:d:494747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.