IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016918.html
   My bibliography  Save this article

Attitude stability control for 6WID unmanned ground vehicle during steering: A collaborative controller considering minimizing tire slip energy loss

Author

Listed:
  • Chen, Guanpeng
  • Gao, Xue
  • Zhao, Yijie
  • Xu, Xiaojun
  • Jiang, Yue

Abstract

The instability of vehicle attitude and wheel slippage during turning on complex roads are key factors affecting the operational efficiency and accuracy of a variable wheelbase six-wheel independent drive unmanned ground vehicle (6WID UGV), posing a serious threat to driving safety. This article proposes a hierarchical coordinated controller to improve the attitude stability of a 6WID UGV equipped with interconnected active hydro pneumatic suspension (IAHPS) and reduce tire slip energy loss. Firstly, an integral sliding mode controller with adaptive high-order coupling factor (AHOCF-ISMC) is designed to determine the active anti roll torque required for stable roll attitude. An adaptive high-order coupling factor is introduced in the controller framework to couple physical components with different properties, avoiding overshoot and oscillation caused by integral saturation of the controller. Secondly, based on satisfying the stability of the roll attitude, the lateral stability and longitudinal traction characteristics of the vehicle are constrained and controlled. An optimization function was established to minimize tire slip energy loss within the feasible range of wheel torque determined by lateral and longitudinal control objectives. Thirdly, the particle swarm optimization algorithm was improved (IPSO) by designing adaptive weighting factors and learning factors, and is used to optimize the wheel torque distribution scheme under composite constraint conditions. Finally, the effectiveness of the coordinated controller was tested and validated in different scenarios. The results show that the designed controller has good control performance and robustness without the need to establish an accurate mathematical model, and performs well in terms of economic benefits and application prospects.

Suggested Citation

  • Chen, Guanpeng & Gao, Xue & Zhao, Yijie & Xu, Xiaojun & Jiang, Yue, 2024. "Attitude stability control for 6WID unmanned ground vehicle during steering: A collaborative controller considering minimizing tire slip energy loss," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016918
    DOI: 10.1016/j.energy.2024.131918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    2. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).
    3. Chen, Guanpeng & Jiang, Yue & Tang, Yuanjiang & Xu, Xiaojun, 2023. "Pitch stability control of variable wheelbase 6WID unmanned ground vehicle considering tire slip energy loss and energy-saving suspension control," Energy, Elsevier, vol. 264(C).
    4. Zhang, Fengqi & Hu, Xiaosong & Langari, Reza & Wang, Lihua & Cui, Yahui & Pang, Hui, 2021. "Adaptive energy management in automated hybrid electric vehicles with flexible torque request," Energy, Elsevier, vol. 214(C).
    5. Cui, Taowen & Zhao, Wanzhong & Tai, Kang, 2021. "Optimal design of electro-hydraulic active steering system for intelligent transportation environment," Energy, Elsevier, vol. 214(C).
    6. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    7. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    8. Lixia Zhang & Taofeng Yan & Fuquan Pan & Wuyi Ge & Wenjian Kong, 2022. "Research on Direct Yaw Moment Control of Electric Vehicles Based on Electrohydraulic Joint Action," Sustainability, MDPI, vol. 14(17), pages 1-25, September.
    9. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Feng & Wang, Xiuhe & Sun, Lingling & Wei, Hongye & Li, Changbin & Ren, Jie, 2025. "Improved 3D hybrid thermal model for global temperature distribution prediction of interior permanent magnet synchronous motor," Energy, Elsevier, vol. 315(C).
    2. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).
    3. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    4. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Jingwei Wang & Yin Han & Peng Li, 2022. "Integrated Robust Optimization of Scheduling and Signal Timing for Bus Rapid Transit," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
    7. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    8. Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
    9. Jingqi Xu & Kevin K Kigen & Dalin Xu & Shilin Wang & Min Gu & Xinyu Liu & Jing Zhao, 2022. "Saturation flow rate analysis for special width approach lanes: An empirical study in Karlsruhe, Germany," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-15, August.
    10. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    11. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    12. Doll, Alisa & Abbasi, Mohammad & Zhao, Ming & Zhou, Xuesong (Simon), 2024. "Oversaturated intersections: A real-world assessment of polynomial fluid queue models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    13. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    14. Dilshad Mohammed & Balázs Horváth, 2024. "Assessing the Paradox of Autonomous Vehicles: Promised Fuel Efficiency vs. Aggregate Fuel Consumption," Energies, MDPI, vol. 17(7), pages 1-19, March.
    15. Chen, Guanpeng & Jiang, Yue & Tang, Yuanjiang & Xu, Xiaojun, 2023. "Pitch stability control of variable wheelbase 6WID unmanned ground vehicle considering tire slip energy loss and energy-saving suspension control," Energy, Elsevier, vol. 264(C).
    16. Sun, Lingyun & Yin, Jiemin & Bilal, Ahmad Raza, 2023. "Green financing and wind power energy generation: Empirical insights from China," Renewable Energy, Elsevier, vol. 206(C), pages 820-827.
    17. Lizhe Wu & Dingxuan Zhao, 2025. "Control of Vehicle Lateral Handling Stability Considering Time-Varying Full-State Constraints," Mathematics, MDPI, vol. 13(8), pages 1-17, April.
    18. Luo, Zhen-hao & Xie, Bin & Tong, Yi-kun & Zhao, Zi-hao & Zheng, Bo-wen & Chen, Zhou-yang & Wen, Chang-kai, 2024. "Energy-saving drive control strategy for electric tractors based on terrain parameter identification," Applied Energy, Elsevier, vol. 376(PA).
    19. Cao, Kaibin & Hu, Minghui & Chen, Shuang & Xiao, Zongxin, 2024. "Dynamic torque coordination control of dual-motor all-wheel drive axles to suppress the longitudinal jerk of the vehicle," Energy, Elsevier, vol. 288(C).
    20. Dongwei Yao & Xinwei Lu & Xiangyun Chao & Yongguang Zhang & Junhao Shen & Fanlong Zeng & Ziyan Zhang & Feng Wu, 2023. "Adaptive Equivalent Fuel Consumption Minimization Based Energy Management Strategy for Extended-Range Electric Vehicle," Sustainability, MDPI, vol. 15(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.