IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272503.html
   My bibliography  Save this article

Saturation flow rate analysis for special width approach lanes: An empirical study in Karlsruhe, Germany

Author

Listed:
  • Jingqi Xu
  • Kevin K Kigen
  • Dalin Xu
  • Shilin Wang
  • Min Gu
  • Xinyu Liu
  • Jing Zhao

Abstract

The special width approach lane (SWAL) is a newly proposed unconventional design, whereby a wide approach lane is divided into two narrower lanes. The design entails the use of a single lane by two passenger cars or one heavy vehicle. Such design has been applicated at signalized intersections of Karlsruhe, Germany. This paper focuses on the saturation flow rate analysis since most existing studies on such design rely on the default highway capacity manual (HCM) values. Saturation flow rate data was collected at four SWAL design based signalized intersections with procedural steps of the HCM 2010 using the video camera. The two-sample t-test was performed to explore the potential influencing factors, and then the non-linear regression analysis was conducted to estimate the saturation flow rate of SWAL. The proposed model can effectively depict the saturation flow rate with lane marking, presence of cyclists, and rainfall being the influencing factors. The overall accuracy of the proposed model is about 95%. The results indicate that the three influencing factors are independent of each other. The existence of cyclists and rainfall lead to a decrease in the saturation flow rate, while the lane markings can improve the saturation flow rate. Moreover, the SWAL works well in Karlsruhe, Germany. The model predicts a base saturation flow rate value of 1652 pcu/h/ln, which is plausible with comparison of the base saturation flow rate recommended in the German Highway Capacity Manual.

Suggested Citation

  • Jingqi Xu & Kevin K Kigen & Dalin Xu & Shilin Wang & Min Gu & Xinyu Liu & Jing Zhao, 2022. "Saturation flow rate analysis for special width approach lanes: An empirical study in Karlsruhe, Germany," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0272503
    DOI: 10.1371/journal.pone.0272503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272503
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Zhao & Peng Li & Xizhao Zhou, 2016. "Capacity Estimation Model for Signalized Intersections under the Impact of Access Point," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    2. Mondal, Satyajit & Gupta, Ankit, 2021. "Speed distribution for interrupted flow facility under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    3. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    4. Xing Gao & Jing Zhao & Meng Wang, 2020. "Modelling the saturation flow rate for continuous flow intersections based on field collected data," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nihat Can Karabulut & Murat Ozen & Oruc Altintasi, 2024. "Understanding the Determinants of Lane Inefficiency at Fully Actuated Intersections: An Empirical Analysis," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    2. Chen, Guanpeng & Gao, Xue & Zhao, Yijie & Xu, Xiaojun & Jiang, Yue, 2024. "Attitude stability control for 6WID unmanned ground vehicle during steering: A collaborative controller considering minimizing tire slip energy loss," Energy, Elsevier, vol. 302(C).
    3. Binghong Pan & Shasha Luo & Jinfeng Ying & Yang Shao & Shangru Liu & Xiang Li & Jiaqi Lei, 2021. "Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    4. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    5. Jia Hu & Zhexi Lian & Xiaoxue Sun & Arno Eichberger & Zhen Zhang & Jintao Lai, 2024. "Dynamic Right-of-Way Allocation on Bus Priority Lanes Considering Traffic System Resilience," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    6. Jingwei Wang & Yin Han & Peng Li, 2022. "Integrated Robust Optimization of Scheduling and Signal Timing for Bus Rapid Transit," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    7. Ambróz HÁJNIK & Veronika HARANTOVÁ & Alica KALAŠOVÁ & Kristián ČULÍK, 2021. "Traffic Modeling Of Intersections On Vajnorska Street In Bratislava," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 29-40, September.
    8. Fang, Zhenyuan & Zhu, Shichao & Fu, Xin & Liu, Fang & Huang, Helai & Tang, Jinjun, 2022. "Multivariate analysis of traffic flow using copula-based model at an isolated road intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. repec:plo:pone00:0214759 is not listed on IDEAS
    10. Usman Ghumman & Hamid Jabbar & Mohsin Islam Tiwana & Ihsan Ullah Khalil & Faraz Kunwar, 2022. "A novel approach of overtaking maneuvering using modified RG method," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    11. Doll, Alisa & Abbasi, Mohammad & Zhao, Ming & Zhou, Xuesong (Simon), 2024. "Oversaturated intersections: A real-world assessment of polynomial fluid queue models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    12. repec:plo:pone00:0158914 is not listed on IDEAS
    13. Binghong Pan & Shangru Liu & Zhenjiang Xie & Yang Shao & Xiang Li & Ruicheng Ge, 2021. "Evaluating Operational Features of Three Unconventional Intersections under Heavy Traffic Based on CRITIC Method," Sustainability, MDPI, vol. 13(8), pages 1-30, April.
    14. Bari, Chintaman Santosh & Chandra, Satish & Dhamaniya, Ashish, 2022. "Service headway distribution analysis of FASTag lanes under mixed traffic conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Sugiarto Sugiarto & Sofyan M Saleh & Yusria Darma & Muhammad Rusdi & Qurrata A’yuni & Teuku Syahrul Fazila & Roudhia Rahma, 2024. "Base saturation flow rate (BSFR) and its effect on performance of pretimed signalized intersection with non-lane based urban heterogeneous traffic," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
    16. Wang, Yongjie & Shen, Binchang & Wu, Hao & Wang, Chao & Su, Qian & Chen, Wenqiang, 2021. "Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    17. Yiqing Wen & Yibing Wang & Zhao Zhang & Jiaxin Wu & Liangxia Zhong & Markos Papageorgiou & Pengjun Zheng, 2023. "Effects of Connected Autonomous Vehicles on the Energy Performance of Signal-Controlled Junctions," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    18. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    19. Zhen Zhang & Lingfei Rong & Zhiquan Xie & Xiaoguang Yang, 2024. "Dynamic Multi-Function Lane Management for Connected and Automated Vehicles Considering Bus Priority," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    20. Chouhan, Rajesh & Dhamaniya, Ashish & Antoniou, Constantinos, 2024. "Analysis of driving behavior in weak lane disciplined traffic at the merging and diverging sections using unmanned aerial vehicle data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.