IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1684-d116348.html
   My bibliography  Save this article

Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

Author

Listed:
  • Yang Yang

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Chao Wang

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Quanrang Zhang

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Xiaolong He

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

Abstract

Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

Suggested Citation

  • Yang Yang & Chao Wang & Quanrang Zhang & Xiaolong He, 2017. "Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle," Energies, MDPI, vol. 10(11), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1684-:d:116348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1684/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Yundong He & Zhong Yang & Chunyun Fu & Zhipeng Cong, 2020. "Torque Coordination Control of an Electro-Hydraulic Composite Brake System During Mode Switching Based on Braking Intention," Energies, MDPI, vol. 13(8), pages 1-19, April.
    2. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Yuping Zeng & Zhikai Huang & Yang Cai & Yonggang Liu & Yue Xiao & Yang Shang, 2018. "A Control Strategy for Driving Mode Switches of Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 10(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1684-:d:116348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.