IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt14j159kn.html
   My bibliography  Save this paper

Deployment Path Analysis for Cooperative ITS Systems

Author

Listed:
  • Shladover, Steven E.

Abstract

Although the performance advantages of cooperative ITS systems are generally appreciated, the deployment challenges that they pose represent a significant impediment. This report begins with a summary of the types of deployment challenges faced by cooperative information systems and cooperative vehicle-highway automation systems (CVHAS), both of which require coordination of deployment of vehicle and infrastructure-based elements. The institutional challenges are discussed first, followed by the technological challenges. In each case, current progress in overcoming these challenges is reviewed and the additional needed steps are suggested. Considerable attention is devoted to showing the range of enabling technologies that are already available on passenger cars in the U.S.

Suggested Citation

  • Shladover, Steven E., 2009. "Deployment Path Analysis for Cooperative ITS Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt14j159kn, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt14j159kn
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/14j159kn.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Browand, Fred & McArthur, John & Radovich, Charles, 2004. "Fuel Saving Achieved in the Field Test of Two Tandem Trucks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29v570mm, Institute of Transportation Studies, UC Berkeley.
    2. Shladover, Steven E. & Miller, Mark A. & Yin, Yafeng & Balvanyos, Tunde & Bernheim, Lauren & Fishman, Stefanie R. & Amirouche, Farid & Mahmudi, Khurran T. & Gonzalez-Mohino, Pedro & Solomon, Joseph & , 2004. "Assessment of the Applicability of Cooperative Vehicle-Highway Automation Systems to Bus Transit and Intermodal Freight: Case Study Feasibility Analyses in the Metropolitan Chicago Region," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7227d024, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bridgelall, Raj & Patterson, Douglas A. & Tolliver, Denver D., 2020. "Policy implications of truck platooning and electrification," Energy Policy, Elsevier, vol. 139(C).
    2. Władysław Marek Hamiga & Wojciech Bronisław Ciesielka, 2022. "Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles," Energies, MDPI, vol. 15(13), pages 1-37, June.
    3. Barua, Limon & Zou, Bo & Choobchian, Pooria, 2023. "Maximizing truck platooning participation with preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Shladover, Steven & Barth, Matthew J & Zhang, Wei-Bin, 2011. "Engaging the International Community: Research on Intelligent Transportation Systems (ITS) Applications to Improve Environmental Performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4fn6f906, Institute of Transportation Studies, UC Berkeley.
    5. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    6. Shladover, Steven E. & Lu, Xiao-Yun & Cody, Delphine, 2009. "Development and Evaluation of Selected Mobility Applications for VII: Concept of Operations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1011t5pk, Institute of Transportation Studies, UC Berkeley.
    7. Ghina H. Merhebi & Rouba Joumblat & Adel Elkordi, 2023. "Assessment of the Effect of Different Loading Combinations Due to Truck Platooning and Autonomous Vehicles on the Performance of Asphalt Pavement," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    8. Yang, Shiyan & Shladover, Steven E. & Lu, Xiao-Yun & Spring, John & Nelson, David & Ramezani, Hani, 2018. "A First Investigation of Truck Drivers’ On-the-Road Experience Using Cooperative Adaptive Cruise Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt92359572, Institute of Transportation Studies, UC Berkeley.
    9. Lu, Xiao-Yun & Shladover, Steven E, 2011. "Automated Truck Platoon Control," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7c55g2qs, Institute of Transportation Studies, UC Berkeley.
    10. Shladover, Steven E. & Nowakowski, Christopher & Lu, Xiao-Yun, 2018. "Using Cooperative Adaptive Cruise Control (CACC)to Form High-Performance Vehicle Streams. Definitions, Literature Review and Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3w6920wz, Institute of Transportation Studies, UC Berkeley.
    11. Miller, Mark & Golub, Aaron, 2010. "Development of Bus Rapid Transit Performance Assessment Guide Tool," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt74c9n4p7, Institute of Transportation Studies, UC Berkeley.
    12. Yifeng Han & Tomoya Kawasaki & Shinya Hanaoka, 2022. "The Benefits of Truck Platooning with an Increasing Market Penetration: A Case Study in Japan," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    13. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2018. "The identical-path truck platooning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 26-39.
    14. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    15. Shladover, Steven E & Nowakowski, Christopher & Lu, Xiao-Yun & Hoogendoorn, Raymond, 2014. "Using Cooperative Adaptive Cruise Control (CACC) to Form High-Performance Vehicle Streams," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3m89p611, Institute of Transportation Studies, UC Berkeley.
    16. Nowakowski, Christopher & Shladover, Steven E & Lu, Xiao-Yun & Thompson, Deborah & Kailas, Aravind, 2015. "Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jf9n5wm, Institute of Transportation Studies, UC Berkeley.
    17. Qazi Ejaz Ali & Naveed Ahmad & Abdul Haseeb Malik & Waheed Ur Rehman & Aziz Ud Din & Gauhar Ali, 2019. "ASPA: Advanced Strong Pseudonym based Authentication in Intelligent Transport System," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-26, August.
    18. Tanvir Uddin Chowdhury & Peter Y. Park & Kevin Gingerich, 2022. "Estimation of Appropriate Acceleration Lane Length for Safe and Efficient Truck Platooning Operation on Freeway Merge Areas," Sustainability, MDPI, vol. 14(19), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt14j159kn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.