IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2019s-17.html
   My bibliography  Save this paper

Estimation of Car Trips Generated by the Arrival of Autonomous Vehicles in the Montreal Metropolitan Area

Author

Listed:
  • Marc-Olivier Pepin
  • Georges A. Tanguay

Abstract

In this article, we estimate the car trips generated by the arrival of autonomous vehicles (AV) in the Greater Montreal Area. Our research methodology is based on a simulation model which estimates new travel demand associated with AV by measuring differences in travel needs by age categories. Given the uncertainty regarding the evolution of critical variables such as future car occupancy rate, we evaluate different scenarios to assess a range of potential effects of VA on motorized travel. Thus, the results predict a 13% average increase in motorized trips based on overall results, and a 16% to 20% increase in trips based on a stable average vehicle occupancy rate in the coming years. Otherwise, the predicted increase in travel is between 2%, based on a 14% increase in occupancy, and 26%, based on a 5% decrease in occupancy. For each of the scenarios assessed in the analysis, we estimate the effects on external costs caused by automobile travel. According to our results, AV could reduce private and social costs by $ 5,059 billion in Quebec.

Suggested Citation

  • Marc-Olivier Pepin & Georges A. Tanguay, 2019. "Estimation of Car Trips Generated by the Arrival of Autonomous Vehicles in the Montreal Metropolitan Area," CIRANO Working Papers 2019s-17, CIRANO.
  • Handle: RePEc:cir:cirwor:2019s-17
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2019s-17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    2. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.
    3. Georges A. Tanguay & Ian Gingras, 2011. "Gas Prices Variations and Urban Sprawl: an Empirical Analysis of the 12 Largest Canadian Metropolitan Areas," CIRANO Working Papers 2011s-37, CIRANO.
    4. Murray, Alan T., 2001. "Strategic analysis of public transport coverage," Socio-Economic Planning Sciences, Elsevier, vol. 35(3), pages 175-188, September.
    5. De Vos, Jonas & Witlox, Frank, 2013. "Transportation policy as spatial planning tool; reducing urban sprawl by increasing travel costs and clustering infrastructure and public transportation," Journal of Transport Geography, Elsevier, vol. 33(C), pages 117-125.
    6. Yap, Menno D. & Correia, Gonçalo & van Arem, Bart, 2016. "Preferences of travellers for using automated vehicles as last mile public transport of multimodal train trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 1-16.
    7. Young, Mischa & Tanguay, Georges A. & Lachapelle, Ugo, 2016. "Transportation costs and urban sprawl in Canadian metropolitan areas," Research in Transportation Economics, Elsevier, vol. 60(C), pages 25-34.
    8. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    9. Zakharenko, Roman, 2016. "Self-driving cars will change cities," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 26-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilshad Mohammed & Balázs Horváth, 2023. "Travel Demand Increment Due to the Use of Autonomous Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    2. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    3. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Lane, Bradley W., 2019. "Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport," Journal of Transport Geography, Elsevier, vol. 81(C).
    5. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    6. Morteza Taiebat & Austin L. Brown & Hannah R. Safford & Shen Qu & Ming Xu, 2019. "A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles," Papers 1901.10581, arXiv.org, revised Feb 2019.
    7. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    8. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    9. Pratama, Andhika Putra & Yudhistira, Muhammad Halley & Koomen, Eric, 2022. "Highway expansion and urban sprawl in the Jakarta Metropolitan Area," Land Use Policy, Elsevier, vol. 112(C).
    10. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    11. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    12. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    13. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    14. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    15. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    17. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    18. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    19. Félix Carreyre & Nicolas Coulombel & Jaâfar Berrada & Laurent Bouillaut, 2022. "Economic evaluation of autonomous passenger transportation services: a systematic review and meta-analysis of simulation studies," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 89-138.
    20. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.

    More about this item

    Keywords

    Autonomous Cars; Driverless; Self-Driving; Motorized Travel; Age;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2019s-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.