IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.13919.html
   My bibliography  Save this paper

Technological improvement rate estimates for all technologies: Use of patent data and an extended domain description

Author

Listed:
  • Anuraag Singh
  • Giorgio Triulzi
  • Christopher L. Magee

Abstract

In this work, we attempt to provide a comprehensive granular account of the pace of technological change. More specifically, we survey estimated yearly performance improvement rates for nearly all definable technologies for the first time. We do this by creating a correspondence of all patents within the US patent system to a set of technology domains. A technology domain is a body of patented inventions achieving the same technological function using the same knowledge and scientific principles. We obtain a set of 1757 domains using an extension of the previously defined classification overlap method (COM). These domains contain 97.14% of all patents within the entire US patent system. From the identified patent sets, we calculated the average centrality of the patents in each domain to estimate their improvement rates, following a methodology tested in prior work. The estimated improvement rates vary from a low of 1.9% per year for the Mechanical Skin treatment - Hair Removal and wrinkles domain to a high of 228.8% per year for the Network management - client-server applications domain. We developed a one-line descriptor identifying the technological function achieved and the underlying knowledge base for the largest 50, fastest 20 as well as slowest 20 of these domains, which cover more than forty percent of the patent system. In general, the rates of improvement were not a strong function of the patent set size and the fastest improving domains are predominantly software-based. We make available an online system that allows for automated searching for domains and improvement rates corresponding to any technology of interest to researchers, strategists and policy formulators.

Suggested Citation

  • Anuraag Singh & Giorgio Triulzi & Christopher L. Magee, 2020. "Technological improvement rate estimates for all technologies: Use of patent data and an extended domain description," Papers 2004.13919, arXiv.org.
  • Handle: RePEc:arx:papers:2004.13919
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.13919
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruttan, Vernon W., 2000. "Technology, Growth, and Development: An Induced Innovation Perspective," OUP Catalogue, Oxford University Press, number 9780195118711.
    2. Fagerberg, Jan, 2000. "Technological progress, structural change and productivity growth: a comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 11(4), pages 393-411, December.
    3. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    4. Henderson, Rebecca, 1995. "Of life cycles real and imaginary: The unexpectedly long old age of optical lithography," Research Policy, Elsevier, vol. 24(4), pages 631-643, July.
    5. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    6. Fagerberg, Jan, 1994. "Technology and International Differences in Growth Rates," Journal of Economic Literature, American Economic Association, vol. 32(3), pages 1147-1175, September.
    7. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    8. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(1), pages 128-159, March.
    10. Roberto Fontana & Alessandro Nuvolari & Hiroshi Shimizu & Andrea Vezzulli, 2013. "Schumpeterian Patterns of Innovation and the Sources of Breakthrough Inventions: Evidence from a Data-set of R&D Awards," Economic Complexity and Evolution, in: Andreas Pyka & Esben Sloth Andersen (ed.), Long Term Economic Development, edition 127, pages 313-340, Springer.
    11. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    12. Jinyoung Kim & Gerald Marschke, 2004. "Accounting for the recent surge in U.S. patenting: changes in R&D expenditures, patent yields, and the high tech sector," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 543-558.
    13. Bart Verspagen, 1997. "Measuring Intersectoral Technology Spillovers: Estimates from the European and US Patent Office Databases," Economic Systems Research, Taylor & Francis Journals, vol. 9(1), pages 47-65.
    14. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    15. Koen Frenken, 2006. "Technological innovation and complexity theory," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(2), pages 137-155.
    16. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    17. Schilling, Melissa A. & Esmundo, Melissa, 2009. "Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government," Energy Policy, Elsevier, vol. 37(5), pages 1767-1781, May.
    18. Lafond, Francois & Greenwald, Diana & Farmer, J. Doyne, 2020. "Can stimulating demand drive costs down? World War II as a natural experiment," MPRA Paper 100823, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    3. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    4. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    5. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    6. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    7. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    8. Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?," Energy: Resources and Markets 165758, Fondazione Eni Enrico Mattei (FEEM).
    9. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    11. Vermeulen, Ben & Pyka, Andreas, 2016. "Agent-based modeling for decision making in economics under uncertainty," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 10, pages 1-33.
    12. Bela Nagy & J. Doyne Farmer & Quan M. Bui & Jessika E. Trancik, 2012. "Statistical Basis for Predicting Technological Progress," Papers 1207.1463, arXiv.org.
    13. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    14. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    15. Luca Berchicci & Nilanjana Dutt & Will Mitchell, 2019. "Knowledge Sources and Operational Problems: Less Now, More Later," Organization Science, INFORMS, vol. 30(5), pages 1030-1053, September.
    16. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    18. F. Ted Tschang & Gokhan Ertug, 2016. "New Blood as an Elixir of Youth: Effects of Human Capital Tenure on the Explorative Capability of Aging Firms," Organization Science, INFORMS, vol. 27(4), pages 873-892, August.
    19. Silva, Ester G. & Teixeira, Aurora A.C., 2008. "Surveying structural change: Seminal contributions and a bibliometric account," Structural Change and Economic Dynamics, Elsevier, vol. 19(4), pages 273-300, December.
    20. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.13919. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.