IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v44y2015i3p777-788.html
   My bibliography  Save this article

Rapid improvements with no commercial production: How do the improvements occur?

Author

Listed:
  • Funk, Jeffrey L.
  • Magee, Christopher L.

Abstract

This paper empirically examines 13 technologies in which significant cost and performance improvements occurred even while no commercial production occurred. Since the literature emphasizes cost reductions through increases in cumulative production, this paper explores cost and performance improvements from a new perspective. The results demonstrate that learning in these pre-commercial production cases arises through mechanisms utilized in deliberate R&D efforts. We identity three mechanisms – materials creation, process changes, and reductions in feature scale – that enable these improvements to occur and use them to extend models of learning and invention. These mechanisms can also apply during post-commercial time periods and further research is needed to quantify the relative contributions of these three mechanisms and those of production-based learning in a variety of technologies.

Suggested Citation

  • Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
  • Handle: RePEc:eee:respol:v:44:y:2015:i:3:p:777-788
    DOI: 10.1016/j.respol.2014.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733314001966
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathews, John A. & Cho, Dong-Sung, 1999. "Combinative capabilities and organizational learning in latecomer firms: the case of the Korean semiconductor industry," Journal of World Business, Elsevier, vol. 34(2), pages 139-156, July.
    2. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2008. "A Retrospective Look at the U.S. Productivity Growth Resurgence," Journal of Economic Perspectives, American Economic Association, vol. 22(1), pages 3-24, Winter.
    3. Murray, Fiona, 2004. "The role of academic inventors in entrepreneurial firms: sharing the laboratory life," Research Policy, Elsevier, vol. 33(4), pages 643-659, May.
    4. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    5. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(01), pages 128-159, March.
    6. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    7. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    8. Sidney G. Winter, 2008. "Scaling heuristics shape technology! Should economic theory take notice?," Industrial and Corporate Change, Oxford University Press, vol. 17(3), pages 513-531, June.
    9. Nile W. Hatch & David C. Mowery, 1998. "Process Innovation and Learning by Doing in Semiconductor Manufacturing," Management Science, INFORMS, vol. 44(11-Part-1), pages 1461-1477, November.
    10. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
    11. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    12. Gold, Bela, 1974. "Evaluating Scale Economies: The Case of Japanese Blast Furnaces," Journal of Industrial Economics, Wiley Blackwell, vol. 23(1), pages 1-18, September.
    13. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, Elsevier.
    14. Klepper, Steven, 1996. "Entry, Exit, Growth, and Innovation over the Product Life Cycle," American Economic Review, American Economic Association, vol. 86(3), pages 562-583, June.
    15. Ron Adner & Peter Zemsky, 2005. "Disruptive Technologies and the Emergence of Competition," RAND Journal of Economics, The RAND Corporation, vol. 36(2), pages 229-254, Summer.
    16. Peter Thompson, 2012. "The Relationship between Unit Cost and Cumulative Quantity and the Evidence for Organizational Learning-by-Doing," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 203-224, Summer.
    17. Michael A. Lapré & Amit Shankar Mukherjee & Luk N. Van Wassenhove, 2000. "Behind the Learning Curve: Linking Learning Activities to Waste Reduction," Management Science, INFORMS, vol. 46(5), pages 597-611, May.
    18. Paul S. Adler & Kim B. Clark, 1991. "Behind the Learning Curve: A Sketch of the Learning Process," Management Science, INFORMS, vol. 37(3), pages 267-281, March.
    19. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    20. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    21. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    22. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    23. Natarajan Balasubramanian & Marvin Lieberman, 2006. "Industry Learning Environments and the Heterogeneity of Firm Performance," Working Papers 06-29, Center for Economic Studies, U.S. Census Bureau.
    24. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    25. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    26. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    27. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    28. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    2. repec:eee:tefoso:v:128:y:2018:i:c:p:104-117 is not listed on IDEAS
    3. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    4. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    5. JongRoul Woo & Christopher L. Magee, 2017. "Exploring the relationship between technological improvement and innovation diffusion: An empirical test," Papers 1704.03597, arXiv.org, revised May 2018.

    More about this item

    Keywords

    Performance; Cost; Production; Learning; Technology; R&D;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:44:y:2015:i:3:p:777-788. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.