IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp769-778.html
   My bibliography  Save this article

Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector

Author

Listed:
  • He, Qi
  • Jiang, Xujia
  • Gouldson, Andy
  • Sudmant, Andrew
  • Guan, Dabo
  • Colenbrander, Sarah
  • Xue, Tao
  • Zheng, Bo
  • Zhang, Qiang

Abstract

China’s commitment to the UNFCCC to peak its emissions by 2030, or sooner, signaled a long anticipated shift in China’s model of development with far reaching consequences. Cities in China, and particularly the residential sector in cities, will be charged with making significant reductions in emissions growth even as rates of urbanization continue to climb. Focusing on Beijing and Shanghai, this paper carries out a measures-based economic analysis of low carbon investment opportunities in the residential sector. Results find significant opportunity: between 2015 and 2030, BAU levels of CO2 emissions could be reduced by 10.2% in Beijing and 6.8% in Shanghai with the adoption of economically attractive low carbon measures. While these headline results underline the case for low carbon investment in the residential sectors of these megacities in China, a closer analysis provides insights for understanding the economics of decarbonisation in cities more generally.

Suggested Citation

  • He, Qi & Jiang, Xujia & Gouldson, Andy & Sudmant, Andrew & Guan, Dabo & Colenbrander, Sarah & Xue, Tao & Zheng, Bo & Zhang, Qiang, 2016. "Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector," Applied Energy, Elsevier, vol. 184(C), pages 769-778.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:769-778
    DOI: 10.1016/j.apenergy.2016.07.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank & the People’s Republic of China Development Research Center of the State Council, 2014. "Urban China : Toward Efficient, Inclusive, and Sustainable Urbanization," World Bank Publications - Books, The World Bank Group, number 18865.
    2. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    3. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    4. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    5. Doron Lavee & Tomer Ash & Gilat Baniad, 2012. "Special Section: Sustainable Development Scenarios," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 285-299, November.
    6. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    7. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    8. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    9. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    10. -, 2012. "Population, territory and sustainable development: Summary," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 22423 edited by Eclac.
    11. Shi, Yan & Du, Yuanyuan & Yang, Guofu & Tang, Yuli & Fan, Likun & Zhang, Jun & Lu, Yijun & Ge, Ying & Chang, Jie, 2013. "The use of green waste from tourist attractions for renewable energy production: The potential and policy implications," Energy Policy, Elsevier, vol. 62(C), pages 410-418.
    12. Axel Baeumler & Ede Ijjasz-Vasquez & Shomik Mehndiratta, 2012. "Sustainable Low-Carbon City Development in China," World Bank Publications - Books, The World Bank Group, number 12330.
    13. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    14. Norse, Elliott A. & Brooke, Sandra & Cheung, William W.L. & Clark, Malcolm R. & Ekeland, Ivar & Froese, Rainer & Gjerde, Kristina M. & Haedrich, Richard L. & Heppell, Selina S. & Morato, Telmo & Morga, 2012. "Sustainability of deep-sea fisheries," Marine Policy, Elsevier, vol. 36(2), pages 307-320.
    15. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    16. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    17. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    18. Mohareb, Eugene A. & Kennedy, Christopher A., 2014. "Scenarios of technology adoption towards low-carbon cities," Energy Policy, Elsevier, vol. 66(C), pages 685-693.
    19. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    20. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    21. Liu, Tianyuan & Jia, Yu, 2014. "An Empirical Study on the Relationship between Urbanization and Changes in Resources and Environment," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 6(09), pages 1-6, September.
    22. Munnings, Clayton & Morgenstern, Richard & Wang, Zhongmin & Liu, Xu, 2014. "Assessing the Design of Three Pilot Programs for Carbon Trading in China," RFF Working Paper Series dp-14-36, Resources for the Future.
    23. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    24. Murata, A. & Liang, J. & Eto, R. & Tokimatsu, K. & Okajima, K. & Uchiyama, Y., 2016. "Environmental co-benefits of the promotion of renewable power generation in China and India through clean development mechanisms," Renewable Energy, Elsevier, vol. 87(P1), pages 120-129.
    25. Eugene Mohareb & Christopher Kennedy, 2012. "Greenhouse Gas Emission Scenario Modeling for Cities Using the PURGE Model," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 875-888, December.
    26. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    27. Liu, Liwei & Sun, Xiaoru & Chen, Chuxiang & Zhao, Erdong, 2016. "How will auctioning impact on the carbon emission abatement cost of electric power generation sector in China?," Applied Energy, Elsevier, vol. 168(C), pages 594-609.
    28. Yao, Chunsheng & Chen, Chongying & Li, Ming, 2012. "Analysis of rural residential energy consumption and corresponding carbon emissions in China," Energy Policy, Elsevier, vol. 41(C), pages 445-450.
    29. repec:idb:brikps:72158 is not listed on IDEAS
    30. -, 2012. "Population, territory and sustainable development," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 22426 edited by Eclac.
    31. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    32. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    33. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    34. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    35. Se-Jik Kim & Hyun Song Shin, 2012. "Sustaining Production Chains through Financial Linkages," American Economic Review, American Economic Association, vol. 102(3), pages 402-406, May.
    36. Colenbrander, Sarah & Gouldson, Andy & Sudmant, Andrew Heshedahl & Papargyropoulou, Effie, 2015. "The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia," Energy Policy, Elsevier, vol. 80(C), pages 24-35.
    37. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    2. Jiayu Yang & Xinhui Feng & Yan Li & Congying He & Shiyi Wang & Feng Li, 2024. "How Does Urban Scale Influence Carbon Emissions?," Land, MDPI, vol. 13(8), pages 1-21, August.
    3. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    4. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    5. Johansson, Tim & Olofsson, Thomas & Mangold, Mikael, 2017. "Development of an energy atlas for renovation of the multifamily building stock in Sweden," Applied Energy, Elsevier, vol. 203(C), pages 723-736.
    6. Peng, Liqun & Zhang, Qiang & Yao, Zhiliang & Mauzerall, Denise L. & Kang, Sicong & Du, Zhenyu & Zheng, Yixuan & Xue, Tao & He, Kebin, 2019. "Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China," Applied Energy, Elsevier, vol. 235(C), pages 1169-1182.
    7. Liu, Xuyi & Kong, Hao & Zhang, Shun, 2021. "Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia?," Renewable Energy, Elsevier, vol. 169(C), pages 23-33.
    8. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    9. David, Martin, 2018. "The role of organized publics in articulating the exnovation of fossil-fuel technologies for intra- and intergenerational energy justice in energy transitions," Applied Energy, Elsevier, vol. 228(C), pages 339-350.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    2. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    3. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    4. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    5. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
    6. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    7. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    8. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    9. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    11. Marc Proksch & Masato Abe & Jana Svedova & Leena Wokeck, 2013. "From Corporate Social Responsibility to Corporate Sustainability: Moving the Agenda Forward in Asia and the Pacific," Studies in Trade and Investment 77, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP).
    12. Suopajärvi, Leena & Poelzer, Gregory A. & Ejdemo, Thomas & Klyuchnikova, Elena & Korchak, Elena & Nygaard, Vigdis, 2016. "Social sustainability in northern mining communities: A study of the European North and Northwest Russia," Resources Policy, Elsevier, vol. 47(C), pages 61-68.
    13. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    14. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    15. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    16. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
    17. Morris, Jennifer F. & Reilly, John M. & Chen, Y.-H. Henry, 2019. "Advanced technologies in energy-economy models for climate change assessment," Energy Economics, Elsevier, vol. 80(C), pages 476-490.
    18. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    19. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
    20. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:769-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.