IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective

Listed author(s):
  • Nielsen, Hana
Registered author(s):

    State-ownership has often been discussed as one of the major causes of poor industrial energy efficiency performance. This paper utilizes long-run historical data on the energy and material use in one specific industrial sector – the iron and steel production – in countries with both central-planning and market-based system, with a particular focus on former Czechoslovakia paralleled with the developments in China. Czechoslovak productive efficiency of the iron and steel sector fluctuated below the energy efficiency frontier. Until the early 1970s, the country’s iron sector was one of the least efficient ones in our sample. It was, however, during the decades of 1970s and 1980s that efficiency measures were adopted and the energy efficiency of the Czechoslovak iron and steel sector increased significantly to, despite of a priori expectations, reach the energy efficiency frontier. Empirical results for other planned economies show similar development of catching-up to the market economies, particularly in the iron production sector during 1980s. A pattern of efficiency convergence was identified. In China, despite its move toward more market oriented economy, the productive efficiency lagged behind as recently as in 2000 (20–35 percent below the efficiency frontier). The relatively late adoption of energy conservation programs and the persistent government control of the sector in certain provinces slowed down the efficiency improvements. In the socialist economies of Eastern Europe, though, central-planners were able to achieve satisfactory productivity increases, primarily driven by efficiency and saving policies and adjustments in existing technology. It is likely, that as was the case of Eastern Europe, the adoption of vigorous energy policies with clearly defined targets accompanied by monitoring and supervision, will have a tremendous impact on the energy intensity as well as the absolute energy use of the sector in China.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191600012X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 185 (2017)
    Issue (Month): P2 ()
    Pages: 1732-1743

    as
    in new window

    Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1732-1743
    DOI: 10.1016/j.apenergy.2015.12.125
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Brada, Josef C, 1974. "Allocative Efficiency and the System of Economic Management in Some Socialist Countries," Kyklos, Wiley Blackwell, vol. 27(2), pages 270-285.
    2. Carlin, Wendy & Schaffer, Mark & Seabright, Paul, 2013. "Soviet power plus electrification: What is the long-run legacy of communism?," Explorations in Economic History, Elsevier, vol. 50(1), pages 116-147.
    3. Tanaka, Kanako, 2008. "Assessment of energy efficiency performance measures in industry and their application for policy," Energy Policy, Elsevier, vol. 36(8), pages 2877-2892, August.
    4. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Okazaki, Teruo & Yamaguchi, Mitsutsune, 2011. "Accelerating the transfer and diffusion of energy saving technologies steel sector experience--Lessons learned," Energy Policy, Elsevier, vol. 39(3), pages 1296-1304, March.
    7. Ma, Jinlong & Evans, David G. & Fuller, Robert J. & Stewart, Donald F., 2002. "Technical efficiency and productivity change of China's iron and steel industry," International Journal of Production Economics, Elsevier, vol. 76(3), pages 293-312, April.
    8. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    9. Moroney, John R., 1990. "Energy consumption, capital and real output: A comparison of market and planned economies," Journal of Comparative Economics, Elsevier, vol. 14(2), pages 199-220, June.
    10. Gomulka, Stanislaw & Rostowski, Jacek, 1988. "An international comparison of material intensity," Journal of Comparative Economics, Elsevier, vol. 12(4), pages 475-501, December.
    11. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
    12. Siitonen, Sari & Tuomaala, Mari & Ahtila, Pekka, 2010. "Variables affecting energy efficiency and CO2 emissions in the steel industry," Energy Policy, Elsevier, vol. 38(5), pages 2477-2485, May.
    13. Roma Mitra Debnath & V.J. Sebastian, 2014. "Efficiency in the Indian iron and steel industry – an application of data envelopment analysis," Journal of Advances in Management Research, Emerald Group Publishing, vol. 11(1), pages 4-19, April.
    14. Poznanski, Kazimierz Z, 1990. "Diffusion Performance of Major Steel-Making Countries: Alternative Econometric Tests," Economic Change and Restructuring, Springer, vol. 23(2), pages 129-141.
    15. Poznanski, Kazimierz, 1986. "Patterns of technology imports: interregional comparison," World Development, Elsevier, vol. 14(6), pages 743-756, June.
    16. Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
    17. Lynn, Leonard, 1981. "New Data on the Diffusion of the Basic Oxygen Furnace in the U.S. and Japan," Journal of Industrial Economics, Wiley Blackwell, vol. 30(2), pages 123-135, December.
    18. Xu, Tengfang & Karali, Nihan & Sathaye, Jayant, 2014. "Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making," Applied Energy, Elsevier, vol. 122(C), pages 179-188.
    19. Broadberry, Stephen & Klein, Alexander, 2011. "When and why did eastern European economies begin to fail? Lessons from a Czechoslovak/UK productivity comparison, 1921-1991," Explorations in Economic History, Elsevier, vol. 48(1), pages 37-52, January.
    20. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    21. Haley, Usha C.V. & Haley, George T., 2013. "Subsidies to Chinese Industry: State Capitalism, Business Strategy, and Trade Policy," OUP Catalogue, Oxford University Press, number 9780199773749.
    22. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    23. Liu, Deqiang & Otsuka, Keijiro, 2004. "A Comparison of Management Incentives, Abilities, and Efficiency between SOEs and TVEs: The Case of the Iron and Steel Industry in China," Economic Development and Cultural Change, University of Chicago Press, vol. 52(4), pages 759-780, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1732-1743. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.