IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/71851.html
   My bibliography  Save this paper

Firm-level environmentally sensitive productivity and innovation in China

Author

Listed:
  • Fujii, Hidemichi
  • Cao, Jing
  • Managi, Shunsuke

Abstract

This study analyzes productive efficiency in relation to CO2 emissions using a unique dataset of 562 Chinese manufacturing firms for the period from 2005 to 2009. We develop a directional distance function approach to identify technical innovators in the area of CO2 emissions. The results indicate that a large number of technical innovators are observed in the textile, paper, steel, and computer industries. Furthermore, there are clearly different trends in productivity change and corporate performance across industries and provinces. This result implies that policy makers need to consider industrial and regional characteristics to develop effective policies that conserve energy and reduce CO2 emissions.

Suggested Citation

  • Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2016. "Firm-level environmentally sensitive productivity and innovation in China," MPRA Paper 71851, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:71851
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/71851/1/MPRA_paper_71851.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Ho, Mun S., 2007. "How do market reforms affect China's responsiveness to environmental policy?," Journal of Development Economics, Elsevier, vol. 82(1), pages 200-233, January.
    2. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    3. Cao, Jing & Karplus, Valerie J., 2014. "Firm-level determinants of energy and carbon intensity in China," Energy Policy, Elsevier, vol. 75(C), pages 167-178.
    4. Zheng, Shiming & Yi, Hongtao & Li, Hui, 2015. "The impacts of provincial energy and environmental policies on air pollution control in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 386-394.
    5. Zhang, Daisheng & Aunan, Kristin & Martin Seip, Hans & Vennemo, Haakon, 2011. "The energy intensity target in China's 11th Five-Year Plan period--Local implementation and achievements in Shanxi Province," Energy Policy, Elsevier, vol. 39(7), pages 4115-4124, July.
    6. Long, Ruyin & Shao, Tianxiang & Chen, Hong, 2016. "Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors," Applied Energy, Elsevier, vol. 166(C), pages 210-219.
    7. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    8. Holz, Carsten A., 2011. "The unbalanced growth hypothesis and the role of the state: The case of China's state-owned enterprises," Journal of Development Economics, Elsevier, vol. 96(2), pages 220-238, November.
    9. Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
    10. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(04), pages 485-504, August.
    11. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    12. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    13. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    14. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    15. Fujii, Hidemichi & Assaf, A. George & Managi, Shunsuke & Matousek, Roman, 2015. "Did the Financial Crisis Affect Environmental Efficiency? Evidence from the Japanese Manufacturing Sector," MPRA Paper 66363, University Library of Munich, Germany.
    16. Hidemichi Fujii & A. George Assaf & Shunsuke Managi & Roman Matousek, 2016. "Did the financial crisis affect environmental efficiency? evidence from the Japanese manufacturing sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 159-168, April.
    17. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    18. Hidemichi Fujii & Kazuma Edamura & Koichi Sumikura & Yoko Furusawa & Naomi Fukuzawa & Shunsuke Managi, 2015. "How enterprise strategies are related to innovation and productivity change: an empirical study of Japanese manufacturing firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 24(3), pages 248-262, April.
    19. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    20. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.
    21. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    22. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    23. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    24. K. Kerstens & S. Managi, 2012. "Total Factor Productivity Growth and Convergence in the Petroleum Industry: Empirical Analysis Testing for Convexity," Post-Print hal-00720616, HAL.
    25. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    26. Yu, Yuqing & Wang, Xiao & Li, Huimin & Qi, Ye & Tamura, Kentaro, 2015. "Ex-post assessment of China's industrial energy efficiency policies during the 11th Five-Year Plan," Energy Policy, Elsevier, vol. 76(C), pages 132-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:appene:v:199:y:2017:i:c:p:13-24 is not listed on IDEAS
    2. Xiaoqing Chen & Zaiwu Gong, 2017. "DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation Policy Constraints," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-19, February.
    3. repec:gam:jsusta:v:10:y:2018:i:3:p:628-:d:133844 is not listed on IDEAS
    4. repec:gam:jsusta:v:9:y:2017:i:12:p:2080-:d:120466 is not listed on IDEAS
    5. repec:gam:jsusta:v:9:y:2017:i:4:p:646-:d:96217 is not listed on IDEAS
    6. repec:eee:eneeco:v:68:y:2017:i:c:p:271-282 is not listed on IDEAS
    7. repec:eee:appene:v:239:y:2019:i:c:p:268-279 is not listed on IDEAS

    More about this item

    Keywords

    Technical innovator; total factor productivity; technology adoption; CO2 emissions; Chinese manufacturing firm;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:71851. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.