IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v57y2018icp111-121.html
   My bibliography  Save this article

Shadow prices and production inefficiency of mineral resources

Author

Listed:
  • Tamaki, Tetsuya
  • Shin, Kong Joo
  • Nakamura, Hiroki
  • Fujii, Hidemichi
  • Managi, Shunsuke

Abstract

With the Millennium Development Goal focusing on the eradication of poverty in developing countries expiring in 2015, the international focus is shifting toward sustainable development. The sustainability of the natural resources that are used as energy sources and in the production of goods is a global issue that is not specific to developing nations. We contribute to the need for quantitative targets for natural resources by calculating the shadow prices and production inefficiency levels of 32 mineral resources by using a stochastic frontier analysis and panel data from 1980 to 2010 in 162 countries. In addition, we provide estimated shadow prices and production inefficiency levels up to 2020 with various levels of production restrictions. The results show the following: (1) The shadow prices and production inefficiency levels of major metals are generally higher in Asian countries than in non-Asian countries; (2) there is an upward trend in the inefficiency levels in Asian countries, whereas the inefficiency levels remain rather stable in non-Asian countries; (3) production restrictions do not guarantee an increase in shadow prices, but the magnitude of the impact of such restrictions seems to be larger in Asian countries compared to non-Asian countries; (4) production restrictions do not seem to affect production inefficiency; thus, they may not be effective in reducing gaps in production inefficiency between Asian and non-Asian countries.

Suggested Citation

  • Tamaki, Tetsuya & Shin, Kong Joo & Nakamura, Hiroki & Fujii, Hidemichi & Managi, Shunsuke, 2018. "Shadow prices and production inefficiency of mineral resources," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 111-121.
  • Handle: RePEc:eee:ecanpo:v:57:y:2018:i:c:p:111-121
    DOI: 10.1016/j.eap.2017.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592616301230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2017.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Surender & Managi, Shunsuke, 2016. "Carbon-sensitive productivity, climate and institutions," Environment and Development Economics, Cambridge University Press, vol. 21(1), pages 109-133, February.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Robert G. Chambers & Rulon D. Pope, 1996. "Aggregate Productivity Measures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1360-1365.
    4. Misra, Dinesh & Kant, Shashi, 2007. "Shadow prices and input-oriented production efficiency analysis of the village-level production units of joint forest management (JFM) in India," Forest Policy and Economics, Elsevier, vol. 9(7), pages 799-810, April.
    5. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    6. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    7. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    8. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    9. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    10. Reig-Martinez, Ernest & Picazo-Tadeo, Andres & Hernandez-Sancho, Francesc, 2001. "The calculation of shadow prices for industrial wastes using distance functions: An analysis for Spanish ceramic pavements firms," International Journal of Production Economics, Elsevier, vol. 69(3), pages 277-285, February.
    11. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    12. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    13. Nagisa Ishinabe & Hidemichi Fujii & Shunsuke Managi, 2013. "The True Cost of Greenhouse Gas Emissions: Analysis of 1,000 Global Companies," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    14. Son Nghiem & Tim Coelli & Scott Barber, 2011. "Sources of Productivity Growth in Health Services: A Case Study of Queensland Public Hospitals," Economic Analysis and Policy, Elsevier, vol. 41(1), pages 37-48, March.
    15. Jing He & Xikang Chen & Yong Shi & Aihua Li, 2007. "Dynamic Computable General Equilibrium Model and Sensitivity Analysis for Shadow Price of Water Resource in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1517-1533, September.
    16. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    17. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    18. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    19. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    20. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    21. Roberts, Ivan & Rush, Anthony, 2012. "Understanding China's demand for resource imports," China Economic Review, Elsevier, vol. 23(3), pages 566-579.
    22. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    23. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    24. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    25. Pengfei Sheng & Jun Yang & Joshua D. Shackman, 2015. "Energy’s Shadow Price and Energy Efficiency in China: A Non-Parametric Input Distance Function Analysis," Energies, MDPI, vol. 8(3), pages 1-15, March.
    26. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    27. Lin, C.-Y. Cynthia & Zhang, Wei, 2011. "Market Power and Shadow Prices for Nonrenewable Resources: An Empirical Dynamic Model," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103397, Agricultural and Applied Economics Association.
    28. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633.
    29. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Cheng, Jinhua & Zhang, Yijun & Dai, Tao & Huang, Jianbai, 2021. "Direct and indirect effects of heterogeneous technical change on metal consumption intensity: Evidence from G7 and BRICS countries," Resources Policy, Elsevier, vol. 71(C).
    2. Correa, Juan A. & Gómez, Marcos & Luengo, Andrés & Parro, Francisco, 2021. "Environmental misallocation in the copper industry," Resources Policy, Elsevier, vol. 71(C).
    3. Nakamura, Hiroki & Managi, Shunsuke, 2020. "Entrepreneurship and marginal cost of CO2 emissions in economic development," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 1-14.
    4. Sugiawan, Yogi & Islam, Moinul & Managi, Shunsuke, 2017. "Global marine fisheries with economic growth," Economic Analysis and Policy, Elsevier, vol. 55(C), pages 158-168.
    5. Karanfil, Fatih & Pierru, Axel, 2021. "The opportunity cost of domestic oil consumption for an oil exporter: Illustration for Saudi Arabia," Energy Economics, Elsevier, vol. 96(C).
    6. George Halkos & Mike G. Tsionas, 2019. "Accounting for Heterogeneity in Environmental Performance Using Data Envelopment Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1005-1025, October.
    7. Shunsuke Managi & Shuning Chen & Pushpam Kumar & Partha Dasgupta, 2024. "Sustainable matrix beyond GDP: investment for inclusive growth," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    8. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Shadow price of patent stock as knowledge stock: Time and country heterogeneity," Economic Analysis and Policy, Elsevier, vol. 60(C), pages 43-61.
    9. Satoshi Honma & Jin-Li Hu, 2018. "A meta-stochastic frontier analysis for energy efficiency of regions in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-16, December.
    10. Li, Yurog & Cong, Zhenglong & Xie, Yufan & Wang, Yan & Wang, Hongmei, 2022. "The relationship between green finance, economic factors, geopolitical risk and natural resources commodity prices: Evidence from five most natural resources holding countries," Resources Policy, Elsevier, vol. 78(C).
    11. Canh, Nguyen Phuc & Schinckus, Christophe & Thanh, Su Dinh, 2020. "The natural resources rents: Is economic complexity a solution for resource curse?," Resources Policy, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    2. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    4. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    5. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    6. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    7. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    8. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    9. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    10. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    11. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    12. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    13. Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    15. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    16. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    17. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    18. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    19. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    20. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.

    More about this item

    Keywords

    Mineral resources; Production restriction; Sustainability; Shadow price;
    All these keywords.

    JEL classification:

    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:57:y:2018:i:c:p:111-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.