IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp210-219.html
   My bibliography  Save this article

Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors

Author

Listed:
  • Long, Ruyin
  • Shao, Tianxiang
  • Chen, Hong

Abstract

This study measured the industrial carbon productivity of 30 provinces in China from 2005 to 2012 and examined the space–time characteristics and the main factors of China’s industrial carbon productivity using Moran’s I index and spatial panel data models. The empirical results indicate that there is significant positive spatial dependence and clustering characteristics in China’s province-level industrial carbon productivity. The spatial dependence may create biased estimated parameters in an ordinary least squares framework; according to the analysis of our spatial panel models, industrial energy efficiency, the opening degree, technological progress, and the industrial scale structure have significantly positive effects on industrial carbon productivity whereas per-capita GDP, the industrial energy consumption structure, and the industrial ownership structure exert a negative effect on industrial carbon productivity.

Suggested Citation

  • Long, Ruyin & Shao, Tianxiang & Chen, Hong, 2016. "Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors," Applied Energy, Elsevier, vol. 166(C), pages 210-219.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:210-219
    DOI: 10.1016/j.apenergy.2015.09.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191501226X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    3. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    4. Burnett, J. Wesley & Bergstrom, John C. & Dorfman, Jeffrey H., 2013. "A spatial panel data approach to estimating U.S. state-level energy emissions," Energy Economics, Elsevier, vol. 40(C), pages 396-404.
    5. Li, Huanan & Mu, Hailin & Zhang, Ming & Li, Nan, 2011. "Analysis on influence factors of China's CO2 emissions based on Path–STIRPAT model," Energy Policy, Elsevier, vol. 39(11), pages 6906-6911.
    6. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    7. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    8. Ausubel, Jesse H, 1995. "Technical progress and climatic change," Energy Policy, Elsevier, vol. 23(4-5), pages 411-416.
    9. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    10. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    11. Zhiqiang Liu, 2001. "Efficiency and Firm Ownership: Some New Evidence," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 19(4), pages 481-496, December.
    12. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    13. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    14. Markusen, James R. & Morey, Edward R. & Olewiler, Nancy, 1995. "Competition in regional environmental policies when plant locations are endogenous," Journal of Public Economics, Elsevier, vol. 56(1), pages 55-77, January.
    15. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    16. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    17. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    18. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    19. He, Jiankun & Deng, Jing & Su, Mingshan, 2010. "CO2 emission from China's energy sector and strategy for its control," Energy, Elsevier, vol. 35(11), pages 4494-4498.
    20. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:126:y:2017:i:c:p:124-131 is not listed on IDEAS
    2. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    3. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    4. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2016. "Firm-level environmentally sensitive productivity and innovation in China," Applied Energy, Elsevier, vol. 184(C), pages 915-925.
    5. repec:eee:appene:v:206:y:2017:i:c:p:1544-1551 is not listed on IDEAS
    6. repec:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2932-1 is not listed on IDEAS
    7. Huan Zhang & Kangning Xu, 2016. "Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-15, August.
    8. repec:gam:jsusta:v:10:y:2018:i:2:p:333-:d:129090 is not listed on IDEAS
    9. repec:eee:eneeco:v:68:y:2017:i:c:p:522-538 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:210-219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.