IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A spatial panel data approach to estimating U.S. state-level energy emissions

  • Burnett, J. Wesley
  • Bergstrom, John C.
  • Dorfman, Jeffrey H.

We take advantage of a long panel data set to estimate the relationship between U.S. state-level carbon dioxide (CO2) emissions, economic activity, and other factors. We specify a reduced-form energy demand model to account for energy consumption activities that drive energy-related emissions. We contribute to the literature by exploring several spatial panel data models to account for spatial dependence between states. Estimation results and rigorous diagnostic analysis suggest that: (1) economic distance plays a role in intra- and inter-state CO2 emissions; and (2) there are statistically significant, positive economic spillovers and negative price spillovers to state-level emissions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 40 (2013)
Issue (Month): C ()
Pages: 396-404

in new window

Handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:396-404
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. J. A. Hausman, 1976. "Specification Tests in Econometrics," Working papers 185, Massachusetts Institute of Technology (MIT), Department of Economics.
  2. J. Barkley Rosser, 2009. "Introduction," Chapters, in: Handbook of Research on Complexity, chapter 1 Edward Elgar.
  3. P Burridge, 1981. "Testing for a Common Factor in a Spatial Autoregression Model," Environment and Planning A, , vol. 13(7), pages 795-800, July.
  4. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
  5. Auffhammer, Maximilian & Carson, Richard Taylor, 2004. "Forecasting the path of China's CO2 emissions using province level information," CUDARE Working Paper Series 0971, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy, revised 2007.
  6. Itkonen, Juha V.A., 2012. "Problems estimating the carbon Kuznets curve," Energy, Elsevier, vol. 39(1), pages 274-280.
  7. Conley, Timothy G & Ligon, Ethan, 2002. " Economic Distance and Cross-Country Spillovers," Journal of Economic Growth, Springer, vol. 7(2), pages 157-87, June.
  8. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
  9. Auffhammer, Maximilian & Steinhauser, Ralf, 2006. "The Future Trajectory of US CO2 Emissions: The Role of State vs. Aggregate Information," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt4878j5w0, Department of Agricultural & Resource Economics, UC Berkeley.
  10. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
  11. Won Kim, Chong & Phipps, Tim T. & Anselin, Luc, 2003. "Measuring the benefits of air quality improvement: a spatial hedonic approach," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 24-39, January.
  12. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
  13. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
  14. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
  15. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-61, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:396-404. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.