IDEAS home Printed from https://ideas.repec.org/a/cup/pscirm/v4y2016i01p175-193_00.html

W

Author

Listed:
  • Neumayer, Eric
  • Plümper, Thomas

Abstract

In spatial econometrics, W refers to the matrix that weights the value of the spatially lagged variable of other units. As unimportant as it may appear, W specifies, or at least ought to specify, why and how other units of analysis affect the unit under observation. This article shows that theory must inform five crucial specification choices taken by researchers. Specifically, the connectivity variable employed in W must capture the causal mechanism of spatial dependence. The specification of W further determines the relative relevance of source units from which spatial dependence emanates, and whether receiving units are assumed to be identically or differentially exposed to spatial stimulus. Multiple dimensions of spatial dependence can be modeled as independent, substitutive or conditional links. Finally, spatial effects need not go exclusively in one direction, but can be bi-directional; recipients can simultaneously experience positive spatial dependence from some sources and negative dependence from others. The importance of W stands in stark contrast to applied researchers’ typical use of crude proxy variables (such as geographical proximity) to measure true connectivity, and the practice of adopting standard modeling conventions rather than substantive theory to specify W. This study demonstrates which assumptions these conventions impose on specification choices, and argues that theories of spatial dependence will often conflict with them.

Suggested Citation

  • Neumayer, Eric & Plümper, Thomas, 2016. "W," Political Science Research and Methods, Cambridge University Press, vol. 4(1), pages 175-193, January.
  • Handle: RePEc:cup:pscirm:v:4:y:2016:i:01:p:175-193_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2049847014000405/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Zhu, Zhen & Morrison, Greg & Puliga, Michelangelo & Chessa, Alessandro & Riccaboni, Massimo, 2018. "The similarity of global value chains: A network-based measure," Network Science, Cambridge University Press, vol. 6(4), pages 607-632, December.
    3. Hübner, Malte & Vannoorenberghe, Gonzague, 2015. "Patience and Inflation," MPRA Paper 65811, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:pscirm:v:4:y:2016:i:01:p:175-193_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ram .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.