IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i8p2877-2892.html
   My bibliography  Save this article

Assessment of energy efficiency performance measures in industry and their application for policy

Author

Listed:
  • Tanaka, Kanako

Abstract

Energy efficiency improvement is a basic yet significant way of addressing both energy security and environment concerns. There are various measures of industrial energy efficiency performance, with different purposes and applications. This paper explores different ways to measure energy efficiency performance (MEEP): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages, and roles within policy frameworks. Policy makers should consider the suitability of MEEP based on criteria such as reliability, feasibility and verifiability. The limitations of both energy intensity and necessity of broader all-inclusive indicators and technology diffusion indicators are also discussed. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21Â GJ. This paper stresses the importance of a proper understanding of various methods to assess energy efficiency, and the linkage with policy objectives and frameworks. Possible next steps for improvement of MEEP, such as database development, were also discussed.

Suggested Citation

  • Tanaka, Kanako, 2008. "Assessment of energy efficiency performance measures in industry and their application for policy," Energy Policy, Elsevier, vol. 36(8), pages 2877-2892, August.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2877-2892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00166-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2877-2892. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.