IDEAS home Printed from
   My bibliography  Save this article

Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis


  • Liu, Hong-Tao
  • Guo, Ju-E
  • Qian, Dong
  • Xi, You-Min


Households consume a large amount of indirect energy through the consumption of goods and services. This fact makes the quantitative analysis of indirect household energy consumption the foundation of energy policy design. This paper improves the compilation method of energy input-output tables, and establishes a sequence of energy input-output tables for China. Based on these tables, the indirect energy consumption of both rural and urban households is calculated. Then, with economic data for the year of 2005, the adjusted input-output price model is applied to evaluate how the alternative energy policies impact production prices, consumption prices, and real income of rural and urban households through the mechanism of indirect energy consumption by using electricity as an example. This research has practical implications for Chinese economy. The integration of energy-efficiency improvements and energy prices increase serves as a means to achieve both economic and energy conservation goals, and may also have a positive effect on residents' real income and a minimal effect on production prices.

Suggested Citation

  • Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3194-3204

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hawdon, David, 2003. "Efficiency, performance and regulation of the international gas industry--a bootstrap DEA approach," Energy Policy, Elsevier, vol. 31(11), pages 1167-1178, September.
    2. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    3. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    4. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    5. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    6. Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
    7. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    8. Rose, A. & Chen, C. Y., 1991. "Sources of change in energy use in the U.S. economy, 1972-1982 : A structural decomposition analysis," Resources and Energy, Elsevier, vol. 13(1), pages 1-21, April.
    9. Chang, Yih F. & Lewis, Charles & Lin, Sue J., 2008. "Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2471-2480, July.
    10. Nguyen, Khanh Q., 2008. "Impacts of a rise in electricity tariff on prices of other products in Vietnam," Energy Policy, Elsevier, vol. 36(8), pages 3135-3139, August.
    11. Wu, Rong-Hwa & Chen, Chia-Yon, 1990. "On the application of input-output analysis to energy issues," Energy Economics, Elsevier, vol. 12(1), pages 71-76, January.
    12. Labandeira, Xavier & Labeaga, Jose M., 2002. "Estimation and control of Spanish energy-related CO2 emissions: an input-output approach," Energy Policy, Elsevier, vol. 30(7), pages 597-611, June.
    13. Polenske, Karen R. & McMichael, Francis C., 2002. "A Chinese cokemaking process-flow model for energy and environmental analyses," Energy Policy, Elsevier, vol. 30(10), pages 865-883, August.
    14. Lehr, Ulrike & Nitsch, Joachim & Kratzat, Marlene & Lutz, Christian & Edler, Dietmar, 2008. "Renewable energy and employment in Germany," Energy Policy, Elsevier, vol. 36(1), pages 108-117, January.
    15. Murthy, N. S. & Panda, Manoj & Parikh, Jyoti, 1997. "Economic development, poverty reduction and carbon emissions in India," Energy Economics, Elsevier, vol. 19(3), pages 327-354, July.
    16. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.
    17. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    18. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    19. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    20. Han, Sang-Yong & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2004. "The role of the four electric power sectors in the Korean national economy: an input-output analysis," Energy Policy, Elsevier, vol. 32(13), pages 1531-1543, September.
    21. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.
    22. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    23. Xiaoli Han & TK. Lakshmanan, 1994. "Structural Changes and Energy Consumption in the Japanese Economy 1975-95: An Input-Output Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 165-188.
    24. Nishimura, Kazuhiko & Hondo, Hiroki & Uchiyama, Yohji, 1996. "Derivation of energy-embodiment functions to estimate the embodied energy from the material content," Energy, Elsevier, vol. 21(12), pages 1247-1256.
    25. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    26. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    27. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    28. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    29. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    30. J. W. Sun, 1999. "Decomposition of Aggregate CO2 Emissions in the OECD: 1960-1995," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 147-155.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    2. Rao, Narasimha D., 2013. "Distributional impacts of climate change mitigation in Indian electricity: The influence of governance," Energy Policy, Elsevier, vol. 61(C), pages 1344-1356.
    3. Yao, Xi-Long & Liu, Yang & Yan, Xiao, 2014. "A quantile approach to assess the effectiveness of the subsidy policy for energy-efficient home appliances: Evidence from Rizhao, China," Energy Policy, Elsevier, vol. 73(C), pages 512-518.
    4. Liu, H. & Polenske, K. R. & Guilhoto, J. J. M. & Xi, Y., 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 37960, University Library of Munich, Germany.
    5. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    6. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
    7. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
    8. Liu, Zhu & Geng, Yong & Lindner, Soeren & Zhao, Hongyan & Fujita, Tsuyoshi & Guan, Dabo, 2012. "Embodied energy use in China's industrial sectors," Energy Policy, Elsevier, vol. 49(C), pages 751-758.
    9. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    10. Wang, Feng & Zhang, Bing, 2016. "Distributional incidence of green electricity price subsidies in China," Energy Policy, Elsevier, vol. 88(C), pages 27-38.
    11. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    12. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    13. repec:gam:jsusta:v:9:y:2017:i:7:p:1277-:d:105335 is not listed on IDEAS
    14. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    15. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2012. "A general equilibrium analysis of the inflationary impact of energy subsidies reform in Iran," IDEC DP2 Series 2-8, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    16. repec:eee:enepol:v:114:y:2018:i:c:p:262-273 is not listed on IDEAS
    17. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    18. repec:eee:enepol:v:111:y:2017:i:c:p:85-94 is not listed on IDEAS
    19. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    20. repec:eee:ecomod:v:222:y:2011:i:14:p:2362-2376 is not listed on IDEAS
    21. Myunghwan Kim & Seung-Hoon Yoo, 2012. "The Economic Cost of Unsupplied Diesel Product in Korea Using Input-Output Analysis," Energies, MDPI, Open Access Journal, vol. 5(9), pages 1-14, September.
    22. Liu, Jun & Feng, Tingting & Yang, Xi, 2011. "The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2887-2894, August.
    23. Liu, Hongtao & Polenske, Karen R. & Xi, Youmin & Guo, Ju'e, 2010. "Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case," Energy Policy, Elsevier, vol. 38(10), pages 6153-6160, October.
    24. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    25. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3194-3204. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.