IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i2p686-698.html
   My bibliography  Save this article

Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis

Author

Listed:
  • Lim, Hea-Jin
  • Yoo, Seung-Hoon
  • Kwak, Seung-Jun

Abstract

This paper attempts to quantify energy consumption and CO2 emissions in the industrial sectors of Korea. The sources of the changes in CO2 emissions for the years 1990-2003 are investigated, in terms of a total of eight factors, through input-output structural decomposition analysis: changes in emission coefficient (caused by shifts in energy intensity and carbon intensity); changes in economic growth; and structural changes (in terms of shifts in domestic final demand, exports, imports of final and intermediate goods, and production technology). The results show that the rate of growth of industrial CO2 emissions has drastically decreased since the 1998 financial crisis in Korea. The effect on emission reductions due to changes in energy intensity and domestic final demand surged in the second period (1995-2000), while the impact of exports steeply rose in the third period (2000-2003). Of all the individual factors, economic growth accounted for the largest increase in CO2 emissions. The results of this analysis can be used to infer the potential for emission-reduction in Korea.

Suggested Citation

  • Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:686-698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00587-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    2. Han, Xiaoli & Chatterjee, Lata, 1997. "Impacts of growth and structural change on CO2 emissions of developing countries," World Development, Elsevier, vol. 25(3), pages 395-407, March.
    3. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    4. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    5. Sheinbaum, Claudia & Rodriguez, Luis, 1997. "Recent trends in Mexican industrial energy use and their impact on carbon dioxide emissions," Energy Policy, Elsevier, vol. 25(7-9), pages 825-831.
    6. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    7. Sue J. Lin & Tzu C. Chang, 1996. "Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-17.
    8. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    9. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    10. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    11. Huang, Jin-ping, 1993. "Industry energy use and structural change : A case study of The People's Republic of China," Energy Economics, Elsevier, vol. 15(2), pages 131-136, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    2. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    3. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    4. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    5. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    6. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    7. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    8. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
    9. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    10. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
    11. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    12. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    13. Mukhopadhyay, Kakali & Forssell, Osmo, 2005. "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997," Ecological Economics, Elsevier, vol. 55(2), pages 235-250, November.
    14. Victor Moutinho & José Manuel Xavier & Pedro Miguel Silva, 2014. "Examining the energy-related CO2 emissions using Decomposition Approach in EU-15 before and after the Kyoto Protocol," CEFAGE-UE Working Papers 2014_17, University of Evora, CEFAGE-UE (Portugal).
    15. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    16. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    17. Suvajit Banerjee, 2019. "Addressing the Drivers of Carbon Emissions Embodied in Indian Exports: An Index Decomposition Analysis," Foreign Trade Review, , vol. 54(4), pages 300-333, November.
    18. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    19. Ang, B. W., 1999. "Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?," Energy Policy, Elsevier, vol. 27(15), pages 943-946, December.
    20. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:686-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.